Day2:T4求逆序对(树状数组+归并排序)
T4: 求逆序对
A[I]为前缀和
推导 (A[J]-A[I])/(J-I)>=M
A[j]-A[I]>=M(J-I)
A[J]-M*J>=A[I]-M*I
设B[]=A[]-M*();
B[J]>=B[I]
也就是求逆序对;
求逆序对的方法主要有两种:
归并排序;
树状数组;
这里两种方法都学习一下:
1.之前对于树状数组的印象就只有单点修改和区间求和
一直觉得lowbit是一个神奇的东西(至今没有搞懂原理)
上网搜了一下用树状数组求逆序对的方法,发现有一个大神写的很棒....看得很明白(感谢~~)
顺便学了一下离散化,也就是文中的:
for
(i=1;i<=n;i++)
{
scanf
(
"%d"
,&in[i].v);
in[i].order=i;
}
sort(in+1,in+n+1,cmp);
for
(i=1;i<=n;i++) aa[in[i].order]=i;
有点像指针操作。(自己对离散化的初步感受是这样的)
然后就是根据树状数组的原理求逆序对了
其实一直不是很清楚树状数组的原理,翻了翻书才有一点点的领悟吧
1).首先是update中的c数组的理解,上面链接的那个资料中解释的过程会误以为c是统计某个数的个数的
仔细看白书会发现其实并不是这样,c数组是用来维护某一区间的区间和的
getsum的操作也就是把沿途中的长条所表示的区间和加起来,这样可以节省时间(注意理解图)
2).具体的,标程中的c是用来记录在某个区间里有多少个数比i小
3).理解lowbit的过程,同样需要仔细回看白书的解释
无论是i=t-n;i+=lowbit(i)或是i-=lowbit(i)都是一个找父亲的过程
4).其实说白了lowbit到底有什么用呢,其实也就是节省了时间,做到快速简便而已吧
嗯...这样的话,对于树状数组的原理算是搞懂了QAQ感觉这种东西很容易忘记怎么办?
给以后的自己一个忠告呗~先看白书,好好理解图,再看自己的感悟,最后看链接资料;
2.另一种方法就是很传统的用:归并排序求逆序对
这种算法求逆序对也很容易理解,简单的说也无非就是基于快排思想+统计个数
主要的程序:p版的...不要在意这些细节...
procedure mergesort(l,r:longint);
var
mid,i,j,k:longint;
begin
if l=r then exit;
mid:=(l+r) div 2;
mergesort(l,mid);
mergesort(mid+1,r);
i:=l;j:=mid+1;k:=l;
while (i<=mid) and (j<=r) do
if v[i]<v[j] then
begin
push(k,i);
ans:=ans+r-j+1;//在l..mid 和 mid+1 ..r中j处于[mid+1,r]中且这段是升序的,那么如果v[j]>v[i]那么v[j..r]都会大于//v[i]这和求逆序对有异曲同工之妙
end
else
push(k,j);
while i<=mid do push(k,i);
while j<=r do push(k,j);
for i:=l to r do v[i]:=temp[i];
end;
根据推导建立等式,之后输出ans即可
很好理解就不多说了...
晚安民那
Day2:T4求逆序对(树状数组+归并排序)的更多相关文章
- 求逆序对[树状数组] jdoj
求逆序对 题目大意:给你一个序列,求逆序对个数. 注释:n<=$10^5$. 此题显然可以跑暴力.想枚举1到n,再求在i的后缀中有多少比i小的,统计答案即可.这显然是$n^2$的.这...显然过 ...
- 【a703】求逆序对(树状数组的解法)
Time Limit: 10 second Memory Limit: 2 MB 问题描述 给定一个序列a1,a2...an.如果存在i小于j 并且ai大于aj,那么我们称之为逆序对,求给定序列中逆序 ...
- [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)
[BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...
- Bzoj 2141: 排队 分块,逆序对,树状数组
2141: 排队 Time Limit: 4 Sec Memory Limit: 259 MBSubmit: 1310 Solved: 517[Submit][Status][Discuss] D ...
- luogu1908 逆序对 树状数组
题目大意:对于给定的一段正整数序列,逆序对就是序列中ai>aj且i<j的有序对.求一段序列的逆序对数. 对于一个数组T,其一个点的值为值与该点下标相等的A序列中点的个数.对T维护一个树状数 ...
- P1908 逆序对——树状数组&离散化&快读快写の学习
题目简述: 对于给定的一段正整数序列,逆序对就是序列中 a_i>a_jai>aj 且 i<ji<j 的有序对. 输出序列中逆序对的数目. 知识补充: 树状数组: 这东西就是 ...
- 洛谷 P1908 逆序对(树状数组解法)
归并排序解法:https://www.cnblogs.com/lipeiyi520/p/10356882.html 题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不 ...
- BZOJ - 3295 动态逆序对 (树状数组套treap)
题目链接 思路和bzoj2141差不多,不过这道题的数据更强一些,线段树套treapT了,树状数组套treap卡过~~ #include<bits/stdc++.h> using name ...
- POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树
题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...
- luogu P1908 逆序对 |树状数组
题目描述 猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游戏,现在他们喜欢玩统计.最近,TOM老猫查阅到一个人类称之为"逆序对"的 ...
随机推荐
- MVC 编程模型及其变种
MVC 编程模型及其变种 MVC全称是Model View Controller, 这是一个模型(model)-查看(view)-调节器(controller)缩写,这是通过通用的编程模型非.MVC当 ...
- (转).net webconfig使用IConfigurationSectionHandler自定section
自定义配置结构 (使用IConfigurationSectionHandler) 假设有以下的配置信息,其在MyInfo可以重复许多次,那么应如何读取配置呢?这时就要使用自定义的配置程序了.<m ...
- 阅读《大数据》Tuzipeizhe
一本好书.4/5明星. 内容:引进美国和信息,相关历史资料.从建国,为了连任奥巴马. 它是引入大型数据在美国,如何从头开始. 的流逝,到近期几年.这股影响美国的大数据 是怎样走入世界,影响各国的. 英 ...
- hive 的分隔符、orderby sort by distribute by的优化
一.Hive 分号字符 分号是SQL语句结束标记,在HiveQL中也是,可是在HiveQL中,对分号的识别没有那么智慧,比如: select concat(cookie_id,concat(';',' ...
- linux_增加用户组_删除用户
添加账号组 /usr/sbin/groupadd iknow 添加账号 /usr/sbin/useradd -g iknow -d /home/iknow/ iknow 更改密码 passwd 选项 ...
- Hibernate制图(两)——许多-于─关系映射
上篇学习了Hibernate的基本映射,也就是单表映射,非常easy就能理解,可是对于关系数据库来说,表之间存在关系是比不可少的.关系数据库中存在的关系是通过主外键建立起来的.反应到Hibernate ...
- 关于tcp封装http协议
如果tcp中没有上层协议,那么就是简单的数据包的传输,如果tcp中有上层协议,那么,当客户端把tcp包发给server的时候,server端的socket收到数据包后,从中分离出应用层协议,交给上层继 ...
- 关于Cassandra与Thrift在int/text/varint上的暧昧
近期简单写了一个基于Cassandra/C++的日志缓存,虽然是Nosql,但是在实际应用中,还是期望能有部分的临时CQL统计 或+-*/可以支持 所以在针对部分字段入库时,选择了作为整形录入,于是麻 ...
- POJ 3047 Bovine Birthday 日期定周求 泽勒公式
标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...
- PDF.NET SOD Ver 5.1完全开源
PDF.NET SOD Ver 5.1完全开源 前言: 自从我2014年下半年到现在的某电商公司工作后,工作太忙,一直没有写过一篇博客,甚至连14年股票市场的牛市都错过了,现在马上要过年了,而今天又是 ...