poj 1384 Piggy-Bank(全然背包)
http://poj.org/problem?id=1384
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 7900 | Accepted: 3813 |
Description
Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a
sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.
But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
Input
two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer
number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of
the coin in monetary units, W is it's weight in grams.
Output
X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
这是一个关于全然背包的题目,题意是有一个存钱罐,没有装钱币的时候质量为e克,装满的时候质量为f克,有n种钱币,价值分别为p[i],质量为w[i],求把存钱罐装满的钱最少为多少。
全然背包跟01背包就仅仅有一个内循环是相反的,其它都一样,这样套着模板来就非常easy理解啦!
AC代码:
#include<iostream>
#include<cstdio>
#define MIN(x,y) ((x)<(y)?(x):(y))
using namespace std;
int p[501], w[501];
int dp[50005];
int main()
{
int t;
cin>>t;
while (t--) {
int e, f;
cin>>e>>f;
int W = f - e;
int n, i, j;
cin>>n;
for (i = 0; i < n; ++i)
cin>>p[i]>>w[i];
for (i = 0; i <= W; ++i)
dp[i] = 1000000;
dp[0] = 0;
for (i = 0; i < n; ++i) {
for (j = w[i]; j <= W; ++j) {
dp[j] = MIN(dp[j - w[i]] + p[i], dp[j]);
}
}
if (dp[W] == 1000000) printf("This is impossible.\n");
else printf("The minimum amount of money in the piggy-bank is %d.\n", dp[W]);
}
return 0;
}
poj 1384 Piggy-Bank(全然背包)的更多相关文章
- POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...
- POJ 1384 Piggy-Bank (完全背包)
Piggy-Bank 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/F Description Before ACM can d ...
- poj 1384 Piggy-Bank(完全背包)
Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 10830 Accepted: 5275 Descr ...
- POJ 1384 Piggy-Bank【完全背包】+【恰好完全装满】(可达性DP)
题目链接:https://vjudge.net/contest/217847#problem/A 题目大意: 现在有n种硬币,每种硬币有特定的重量cost[i] 克和它对应的价值val[i]. 每 ...
- POJ 1384 POJ 1384 Piggy-Bank(全然背包)
链接:http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissio ...
- POJ 3260 The Fewest Coins(多重背包+全然背包)
POJ 3260 The Fewest Coins(多重背包+全然背包) http://poj.org/problem?id=3260 题意: John要去买价值为m的商品. 如今的货币系统有n种货币 ...
- POJ 1384 Piggy-Bank 背包DP
所谓的全然背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 事实上和一般01背包没多少差别,只是数量能够无穷大,那么就能够利用一个物品累加到总容量结尾就能够了. ...
- G 全然背包
<span style="color:#3333ff;">/* /* _________________________________________________ ...
- HDU 1248 寒冰王座(全然背包:入门题)
HDU 1248 寒冰王座(全然背包:入门题) http://acm.hdu.edu.cn/showproblem.php?pid=1248 题意: 不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票 ...
随机推荐
- Merging a WPF application into a single EXE(WPF应用程序合并成单个Exe文件)
I always dislike handing off little applications to people. Not because I can’t, but because of the ...
- 最经常使用的两种C++序列化方案的使用心得(protobuf和boost serialization)
导读 1. 什么是序列化? 2. 为什么要序列化?优点在哪里? 3. C++对象序列化的四种方法 4. 最经常使用的两种序列化方案使用心得 正文 1. 什么是序列化? 程序猿在编写应用程序的时候往往须 ...
- Ubuntu 8.04下安装DB2方法
參考文献: How-to: Ubuntu 7.10 Server x86 32-bit and DB2 Express-C v9.5 DB2 v9.7 Infomation Center 场景:在IB ...
- 一步一步学android之事件篇——单选按钮监听事件
在平常使用软件的时候,我们经常会碰见一些选择题,例如选择性别的时候,在男和女之间选,前面说过这个情况要用RadioGroup组件,那么点击了之后我们该怎么获取到选择的那个值呢,这就是今天要说的OnCh ...
- fiddler4使用教程(转)
Fiddler的基本介绍 Fiddler的官方网站: www.fiddler2.com Fiddler官方网站提供了大量的帮助文档和视频教程, 这是学习Fiddler的最好资料. Fiddler是最 ...
- Java与C/C++有什么区别
JDK包含JRE, 1-08: Helloworld: 01-08:classpath配置: 运行其它目录下的class文件: classpath一般不加分号,只找classpath下的文件: 后面加 ...
- getline与get函数的区别
get()函数相对getline来说使用方法要灵活的多了. 1. int get()是指从流中抽取单个字符并返回,这个是没有參数的形式.由于c++不像c语言使用getchar() 2.istrea ...
- 阅读zepto.js的core中的Core methods
学习zepto.js,參考资料:http://www.zeptojs.cn/ 跟jQuery一样.其选择符号也是$; 首先接触的是 $.() 选择 $(selector, [context]) ⇒ ...
- poj1236 有向图加边变成强连通图
给我们一个有向图,有两个问题 1.最少要给多少个点发消息,才能使得所有的点都收到消息(消息可以随边传递) 2.最少需要多少条边才能使得图变成强连通图 对于一个强连通分量,可以当做一个点来考虑,所以我们 ...
- oracle数据库恢复与备份
一.oracle数据库恢复 1.恢复刚才删除的一条数据 delete from emp e where e.empname='SMITH' select * from flashback_transa ...