<pre name="code" class="cpp">/*
扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。 证明:设 a>b。   1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;   2,ab!=0 时   设 ax1+by1=gcd(a,b);   bx2+(a mod b)y2=gcd(b,a mod b);   根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);   则:ax1+by1=bx2+(a mod b)y2;   即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;   根据恒等定理得:x1=y2; y1=x2-(a/b)*y2; 这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
*/ #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int exgcd(int a, int b, int &x, int &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
int r = exgcd(b, a%b, x, y);
int t = x;
x = y;
y = t - (a/b) * y;
return r;
} int main() {
int a, b, x, y;
while (cin >> a>> b) {
int r = exgcd(a, b, x, y);
cout << "最大公约数为"<< r<< " "<< "x、y的值分别为" << x << " "<< y<< endl;
cout << "方程的每一个解都可以由 "<< x <<"+ k*"<< b/r<< " "<< y << "- k*"<< a/r<< " 得到!"<< endl<< endl;
}
return 0;
}

												

ACM_扩展欧几里德算法的更多相关文章

  1. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  2. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  3. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  4. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  5. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  6. HDU 1576 A/B 扩展欧几里德算法

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 扩展欧几里德算法(递归及非递归实现c++版)

    今天终于弄懂了扩展欧几里德算法,有了自己的理解,觉得很神奇,就想着写一篇博客. 在介绍扩展欧几里德算法之前,我们先来回顾一下欧几里德算法. 欧几里德算法(辗转相除法): 辗转相除法求最大公约数,高中就 ...

  8. POJ 1061 青蛙的约会(扩展欧几里德算法)

    题意:两只青蛙在同一个纬度上跳跃,给定每个青蛙的开始坐标和每秒跳几个单位,纬度长为L,求它们相遇的最短时间. 析:开始,一看只有一组数据,就想模拟一下,觉得应该不会超时,但是不幸的是TLE了,我知道这 ...

  9. POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解

    扩展欧几里得算法模板 #include <cstdio> #include <cstring> #define ll long long using namespace std ...

随机推荐

  1. 同时只允许Count个线程访问同一块区域的实现方式

    转载请注明出处. 好吧,后来才发现有Semaphore和SemaphoreSlim这两个类. 以前的答案: 最近.Net项目中用到了网页截图功能,这个截图功能是类似后台开了一个IE浏览器默默加载某个网 ...

  2. lesson - 5 Linux用户和组管理

    1. /etc/passwd由 : 分隔成7个字段(1) 用户名 规则:大小写字母.数字.减号(不能出现在首位).点以及下划线,其他字符不合法 (2) x 放密码,安全起见放到 /etc/shadow ...

  3. 浅谈JavaScript的面向对象程序设计(一)

    面向对象的语言有一个标志,他们都有类的概念,通过类可以创建多个具有相同属性和方法的对象.但是JavaScript中没有类的概念,因此JavaScript与其他的面向对象语言还是有一定区别的.JavaS ...

  4. 巧用php中的array_filter()函数去掉多维空值

    一直一维array_filter() 函数只能去除一维数组,其实这个函数也能去除多维数组: $arr =[ '0'=>array(), '1'=>'false', '2'=>'tes ...

  5. 吓尿了,mac下bash出了问题

    由于个人的脑残行为,使用homebrew安装bash后,使用chsh命令将其改成brew安装的特定版本的bash,结果上次brew更新bash之后,就彻底用不了shell了... 无奈只能添加新的管理 ...

  6. thinkinginjava学习笔记10_容器

    Java中并没有像Perl.Python.Ruby那样对容器有直接的支持,但是可以依靠容器类来完成相同的工作: 泛型 使用一个ArrayList对象可以保存一系列的对象,如: ArrayList ap ...

  7. Head First设计模式之访问者模式

    一.定义 定义:表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素类的前提下定义作用于这些元素的新操作. 访问者模式适用于数据结构相对稳定的系统, 它把数据结构和作用于数据结构之上的操 ...

  8. jq选择器汇总

    $("div") //标签 $(".box") //类 $("#box") //ID $("a[href][name]" ...

  9. angular4.0 路由守卫详解

    在企业应用中权限.复杂页多路由数据处理.进入与离开路由数据处理这些是非常常见的需求. 当希望用户离开一个正常编辑页时,要中断并提醒用户是否真的要离开时,如果在Angular中应该怎么做呢? 其实Ang ...

  10. angular4.0运行在微信端的坑坑洼洼

    最近的一个项目,我用ng4操刀,踩了超多的坑: 坑1:项目build后,刷新后404错误: 解决方案:<angular4.0项目build发布后,刷新页面报错404> 坑2:微信分享: 运 ...