Given an unsorted array of integers, find the length of longest continuous increasing subsequence.

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4.

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.

Note: Length of the array will not exceed 10,000.


题目标签:Array

  题目给了一个没有排序的nums array,让我们找到其中最长连续递增序列的长度。

  维护一个maxLen,每次遇到递增数字就tempLen++,遇到一个不是递增数字的话,就把tempLen 和maxLen 中大的保存到maxLen。

Java Solution:

Runtime beats 69.72%

完成日期:10/21/2017

关键词:Array

关键点:维护一个maxLen

 class Solution
{
public int findLengthOfLCIS(int[] nums)
{
if(nums == null || nums.length == 0)
return 0; int maxLen = 0;
int tempLen = 1; for(int i=1; i<nums.length; i++)
{
if(nums[i] <= nums[i-1])
{
maxLen = Math.max(maxLen, tempLen);
tempLen = 1;
}
else
{
tempLen++;
} } return Math.max(maxLen, tempLen);
}
}

参考资料:N/A

LeetCode 题目列表 - LeetCode Questions List

LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)的更多相关文章

  1. [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  2. LeetCode 674. Longest Continuous Increasing Subsequence最长连续递增序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest continuous increasing subsequenc ...

  3. [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  4. 674. Longest Continuous Increasing Subsequence最长连续递增子数组

    [抄题]: Given an unsorted array of integers, find the length of longest continuous increasing subseque ...

  5. Leetcode674.Longest Continuous Increasing Subsequence最长连续递增序列

    给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...

  6. [Leetcode]674. Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  7. leetcode300. Longest Increasing Subsequence 最长递增子序列 、674. Longest Continuous Increasing Subsequence

    Longest Increasing Subsequence 最长递增子序列 子序列不是数组中连续的数. dp表达的意思是以i结尾的最长子序列,而不是前i个数字的最长子序列. 初始化是dp所有的都为1 ...

  8. 【Leetcode_easy】674. Longest Continuous Increasing Subsequence

    problem 674. Longest Continuous Increasing Subsequence solution class Solution { public: int findLen ...

  9. 【LeetCode】674. Longest Continuous Increasing Subsequence 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 空间压缩DP 日期 题目地址:https: ...

随机推荐

  1. 使用C#编写SqlHelper类

    无聊的周末,学习.编码无力.想找点事干但又不知道干点什么,猛然发现自己学过的SqlHelper快忘记了.于是乎虎躯一震心想怎能如此堕落下去,立马打开电脑,双手摸上键盘.写下此文作为学习过程中的复习,并 ...

  2. CoordinatorLayout的使用

    最近项目有一个需求,做出类似闲鱼鱼塘界面的效果.如下图: 所以想到用CoordinatorLayout+AppBarLayout+CollapsingToolbarLayout去搭建此界面. Coor ...

  3. CentOS文件权限管理

    目录 文件属性 chown更改所有者 chgrp更改所属组 文件权限rwx chmod修改权限 默认权限umask 权限判定的顺序 特殊权限SUID,SGID,sticky 隐藏权限chattr,ls ...

  4. Java基础——集合源码解析 List List 接口

    今天我们来学习集合的第一大体系 List. List 是一个接口,定义了一组元素是有序的.可重复的集合. List 继承自 Collection,较之 Collection,List 还添加了以下操作 ...

  5. MySQL主从同步和读写分离的配置

    主服务器:192.168.1.126 从服务器:192.168.1.163 amoeba代理服务器:192.168.1.237 系统全部是CentOS 6.7 1.配置主从同步 1.1.修改主服务器( ...

  6. 进入css3动画世界(二)

    进入css3动画世界(二) 今天主要来讲transition和transform入门,以后会用这两种属性配合做一些动效. 注:本文面向前端css3动画入门人员,我对这个也了解不深,如本文写的有纰漏请指 ...

  7. 【POJ】2115 C Looooops(扩欧)

    Description A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  8. 从DDD开始说起

    前言 从13年接触DDD之后开始做应用架构已经整整四个年头. 四年里关于DDD的感触良多,慢慢有了一些心得. 关于DDD的介绍已经有很多的文章和书籍,这里我推荐三本最重要的书籍. <领域驱动设计 ...

  9. Judge Route Circle

    Initially, there is a Robot at position (0, 0). Given a sequence of its moves, judge if this robot m ...

  10. js自执行函数写法

    (1)写法1 (function(){ //函数内容 })() (2)写法2 (function(){ //函数内容 }())