2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function(切比雪夫多项式+乘法逆元)
哈哈哈哈哈哈哈哈哈哈哈哈,终于把这道题补出来了_(:з」∠)_
来写题解啦。
_(:з」∠)_ _(:з」∠)_ _(:з」∠)_ _(:з」∠)_ _(:з」∠)_
哈哈哈哈哈哈,从9月16日打了这个题之后就一直在补这道题,今天终于a了,哈哈哈哈哈哈。
先把代码贴上,有时间再好好写题解,哈哈哈哈哈哈。ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙ヾ(◍°∇°◍)ノ゙
代码,嘻嘻:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int mod=;
ll qpow(ll x, int q){
ll res = ;
while(q){
if(q%) res = res*x%mod;
x = x*x%mod;
q /= ;
}
return res;
}
int main(){
int n,m;
ll ans;
while(~scanf("%d%d",&n,&m)){
if(m>n)printf("0\n");
else if(n%==&&m%==||n%==&&m%==)printf("0\n");
else if(n==&&m==)printf("1\n");
else if(m==){
if(n%==)printf("0\n");
else if(n%==){
if((n/)%==)printf("998244352\n");
else printf("1\n");
}
}
else{
ans=;
for(int i=n-m+;i<=n+m-;i+=)
ans=(ans*i)%mod;
ans=(ans*n)%mod;
ll temp=;
for(int i=;i<=m;i++)
temp=(i*temp)%mod;
ll cnt;
cnt=qpow(temp,mod-);
//cout<<"aaaaaaaaaaaaaaaa"<<endl;
ans=ans*cnt%mod;
ans=((n-m)/)%==?ans:-ans;
ans=(ans+mod)%mod;
printf("%lld\n",ans%mod);
}
}
return ;
}
溜啦溜啦,哈哈哈哈哈哈哈哈。
今天来写题解啦。
1000ms
131072K
f(cos(x))=cos(n∗x) holds for all x.
Given two integers n and m, you need to calculate the coefficient of xm in f(x), modulo 998244353.
Input Format
Multiple test cases (no more than 100).
Each test case contains one line consisting of two integers n and m.
1≤n≤109,0≤m≤104.
Output Format
Output the answer in a single line for each test case.
样例输入
2 0
2 1
2 2
样例输出
998244352
0
2
题目来源
题目一开始没看懂什么意思,后来知道是切比雪夫多项式后,才明白题目要求的是什么。
在多项式中求xm的系数。
切比雪夫多项式, 自行百度。
切比雪夫多项式的公式:
公式1:
公式2:
切比雪夫多项式举例:
我是用公式2写的代码。
通过研究这个公式,可以发现:
1.当n和m奇偶性不同的时候,公式结果为0;
2.当m为0的时候可以发现,结果是有规律的。1,0,-1,0,4个一循环,就可以判断if(n%2==1)结果为0,
if((n/2)%2==1),结果为-1,if((n/2)%2==0)结果为1;
3.因为只有n和m同奇或者同偶,用公式计算,通过分析公式2,可以将公式简化。n!!是二阶乘的意思,就是n*(n-2)*(n-4)*(n-6)*...2;
可以将公式上下抵消一部分数,最后可以得到公式的主体部分为n*(n+m-2)*(n+m-2)*...(n-m+2)/m!;
然后就是乘法逆元,将m!逆元,乘法逆元,找度娘。
这个题写的好讨厌,老是小细节出问题,wa了好几好几发_(:з」∠)_
一开始没有将公式优化,也没有用逆元,直接就是超时_(:з」∠)_,改了无数次终于改对了,太菜了,QAQ。
代码解释:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int mod=;
ll qpow(ll x, int q){ //乘法逆元
ll res = ;
while(q){
if(q%) res = res*x%mod;
x = x*x%mod;
q /= ;
}
return res;
}
int main(){
int n,m;
ll ans;
while(~scanf("%d%d",&n,&m)){
if(m>n)printf("0\n"); //x的次方数最大为n次,超过了就不存在
else if(n%==&&m%==||n%==&&m%==)printf("0\n"); //n和m奇偶性不同的时候结果为0
else if(n==&&m==)printf("1\n"); //如果n和m为0,结果为1
else if(m==){ //如果m为0,就是有规律的
if(n%==)printf("0\n");//如果为奇数,就是0
else if(n%==){ //如果为偶数
if((n/)%==)printf("998244352\n");//除以2之后如果为奇数就是-1,(-1+mod)%mod结果就是这个数
else printf("1\n");//除以2之后如果为偶数就是1
}
}
else{ //其他的通过公式进行计算
ans=;
for(int i=n-m+;i<=n+m-;i+=) //优化之后只需要进行部分操作就可以
ans=(ans*i)%mod;//二阶乘
ans=(ans*n)%mod;//公式
ll temp=;
for(int i=;i<=m;i++)
temp=(i*temp)%mod;//m的阶乘
ll cnt;
cnt=qpow(temp,mod-);//m的阶乘的逆元
//cout<<"aaaaaaaaaaaaaaaa"<<endl;
ans=ans*cnt%mod;//将结果进行相乘
ans=((n-m)/)%==?ans:-ans;//判断正负号
ans=(ans+mod)%mod;
printf("%lld\n",ans%mod);
}
}
return ;
}
作为一个数学渣,做这种题目简直要命_(:з」∠)_
这个题也没用到什么很厉害的算法,就是数学题,大佬们肯定很easy的就过了_(:з」∠)_
加油_(:з」∠)_
2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function(切比雪夫多项式+乘法逆元)的更多相关文章
- 2017 ACM-ICPC 西安网络赛 F.Trig Function Chebyshev多项式
自己太菜,数学基础太差,这场比赛做的很糟糕.本来想吐槽出题人怎么都出很数学的题,现在回过头来想还是因为自己太垃圾,竞赛就是要多了解点东西. 找$f(cos(x))=cos(nx)$中$x^m$的系数模 ...
- HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛)
HDU 4046 Panda (ACM ICPC 2011北京赛区网络赛) Panda Time Limit: 10000/4000 MS (Java/Others) Memory Limit: ...
- 【推导】计蒜客17119 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function
题意:给你n,m,让你求cos(nx)的展开式的(cos(x))^m项的系数. 更一般的式子是这样的:. 队友的代码: #include<cstdio> #include<algor ...
- 2014ACM/ICPC亚洲区西安站现场赛 F color(二项式反演)
题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k < ...
- 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem【状态压缩】
2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 M. Frequent Subsets Problem 题意:给定N和α还有M个U={1,2,3,...N}的子集,求子集X个数,X满足:X是U ...
- 2016 ACM/ICPC亚洲区青岛站现场赛(部分题解)
摘要 本文主要列举并求解了2016 ACM/ICPC亚洲区青岛站现场赛的部分真题,着重介绍了各个题目的解题思路,结合详细的AC代码,意在熟悉青岛赛区的出题策略,以备战2018青岛站现场赛. HDU 5 ...
- ICPC 2018 徐州赛区网络赛
ACM-ICPC 2018 徐州赛区网络赛 去年博客记录过这场比赛经历:该死的水题 一年过去了,不被水题卡了,但难题也没多做几道.水平微微有点长进. D. Easy Math 题意: ...
- 2016 ACM/ICPC亚洲区大连站-重现赛 解题报告
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=5979 按AC顺序: I - Convex Time limit 1000 ms Memory li ...
- Skiing 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛H题(拓扑序求有向图最长路)
参考博客(感谢博主):http://blog.csdn.net/yo_bc/article/details/77917288 题意: 给定一个有向无环图,求该图的最长路. 思路: 由于是有向无环图,所 ...
随机推荐
- http中的get和post(二)
博客园精华区有篇文章< GET 和 POST 有什么区别?及为什么网上的多数答案都是错的 >,文中和回复多是对以下两个问题进行了深究: 长度限制 Url 是否隐藏数据 在我看来这两者都不是 ...
- dropout理解:1神带9坑
Dropout是深度学习中防止过拟合的一项非常常见的技术,是hinton大神在12年提出的一篇论文里所采用的方法.有传言hinton大神的数学功底不是很好,所以他所提出的想法背后的数学原理并不是很复杂 ...
- python写入文本报错TypeError: expected a string or other character buffer object
今天用python写入文本, file_object2 = open('result.txt', 'w') file_object2.write(bookid_list) file_object2.c ...
- 回顾2017系列篇(一):最佳的11篇UI/UX设计文章
2017已经接近尾声,在这一年中,设计领域发生了诸多变化.也是时候对2017年做一个总结,本文主要是从2017设计文章入手,列出了个人认为2017设计行业里最重要的UI/UX文章的前11名,供大家参考 ...
- mysql TIMESTAMP与DATATIME的区别---转载加自己的看法
from:http://lhdeyx.blog.163.com/blog/static/318196972011230113645715/ from:http://blog.csdn.NET/zht6 ...
- Ubuntu中启用ssh服务---转载
ssh程序分为有客户端程序openssh-client和服务端程序openssh-server.如果需要ssh登陆到别的电脑,需要安装openssh-client,该程序Ubuntu是默认安装的.而如 ...
- KVM(二):KVM应用
++++++++++++++++++++++++++++++创建和拍摄快照++++++++++++++++++++++++++++++++++ KVM快照方法常用的是qemu-img snapshot ...
- DNS 域名系统的简介
一.DNS域名系统简介 1.网络中为了区别各个主机,必须为每台主机分配一个唯一的地址, 这个地址即称为“IP 地址.但这些数字难以记忆, 所以采用“域名” 的方式来取代这些数字. 2.当某台主机要与其 ...
- [LeetCode] 链表反转相关题目
暂时接触到LeetCode上与链表反转相关的题目一共有3道,在这篇博文里面总结一下.首先要讲一下我一开始思考的误区:链表的反转,不是改变节点的位置,而是改变每一个节点next指针的指向. 下面直接看看 ...
- virtual box未卸载报"Invalid Drive:F:\"的解决方案
=============================================== 20170417_第一次修改 ccb_warlock === ...