二分查找树特点:

(1) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;

(2) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;

(3) 任意节点的左、右子树也分别为二叉查找树。

(4) 没有键值相等的节点(no duplicate nodes)。

前序遍历:中左右

中序遍历:左中右

序遍历:左右中

二叉查找树的重点在于如何找节点的前驱节点和后继节点

#pragma once
#include <iostream>
using namespace std; template <class T>
class BSTNode
{
public:
T key;
BSTNode *parent;
BSTNode *left;
BSTNode *right; BSTNode(T value, BSTNode *p, BSTNode *l, BSTNode *r):key(value),parent(p),left(l),right(r)
{ }
}; template <class T>
class BSTree
{
private:
BSTNode<T> *mRoot; public:
BSTree():mRoot(NULL){}
~BSTree(){} // 前序排序
void preOrder()
{
preOrder(mRoot);
}
void inOrder()
{
inOrder(mRoot);
}
void postOrder()
{
postOrder(mRoot);
}
// 查找二叉树中键值为key的节点
BSTNode<T>* SearchKey(const T key)
{
return SearchKey(mRoot, key);
}
BSTNode<T>* minKey()
{
return minKey(mRoot);
}
BSTNode<T>* maxKey()
{
return maxKey(mRoot);
}
// 插入节点
void insert( T key)
{
BSTNode<T> *z = new BSTNode<T>(key, NULL, NULL, NULL); if (z == NULL)
{
return;
}
insert(mRoot, z);
} private:
// 前序排序
void preOrder(BSTNode<T> *tree) const
{
if (tree != NULL)
{
cout << tree->key << " ";
preOrder(tree->left);
preOrder(tree->right);
}
} // 中序排序
void inOrder(BSTNode<T> *tree) const
{
if (tree != NULL)
{
preOrder(tree->left);
cout << tree->key << " ";
preOrder(tree->right);
}
} // 后序排序
void postOrder(BSTNode<T> *tree) const
{
if (tree != NULL)
{
preOrder(tree->left);
preOrder(tree->right);
cout << tree->key << " ";
}
}
BSTNode<T>* SearchKey(BSTNode<T>* pNode, const T key) const
{
// 递归查找
/*if (pNode = NULL || key == pNode->key)
{
return pNode;
}
else if (key > pNode->key)
{
return SearchKey(pNode->right);
}
else
{
return SearchKey(pNode->left);
}*/ // 非递归查找
BSTNode<T>* x = pNode;
while (x != NULL)
{
if (key > x->key)
{
x = x->right;
}
else if (key < x->key)
{
x = x->left;
}
else
{
return x;
}
} return NULL;
}
// 将节点插入到二叉树中
void insert(BSTNode<T>* &tree, BSTNode<T> *Node)
{
BSTNode<T> *y = NULL;
BSTNode<T> *x = tree;
while (NULL != x)
{
y = x;
if (Node->key > x->key)
{
x = x->right;
}
else
{
x = x->left;
}
} Node->parent = y; // 这到后面两句为关键代码
if (NULL == y)
{
tree = Node;
}
else if (Node->key > y->key)
{
y->right = Node;
}
else
{
y->left = Node;
}
}
// 查找最小节点
BSTNode<T>* minKey(BSTNode<T>* pNode) const
{
while (pNode != NULL)
{
pNode = pNode->left;
} return pNode;
}
BSTNode<T>* maxKey(BSTNode<T>* pNode) const
{
while (pNode != NULL)
{
pNode = pNode->right;
} return pNode;
}
// 找节点(x)的后继节点。即查找二叉树中数值大于该节点的最小值
BSTNode<T>* Successor(BSTNode<T>* x)
{
// 分三种情况
// 1. x有右孩子,找到以右孩子为根的子树的最小节点
// 2. x没有右孩子,当x为左孩子,则x的父节点为后继节点
// 2. x没有右孩子,当x为右孩子,则找x的最低父节点,并且该父节点具有左孩子
if (x->right != NULL)
{
return minKey(x->right);
}
BSTNode<T>* y = x->parent;
while ((NULL != y) &&(x == y->right))
{
x= y;
y = y->parent;
} return y;
}
// 找结点(x)的前驱结点。即查找"二叉树中数据值小于该结点"的"最大结点"
BSTNode<T>* BSTree<T>::predecessor(BSTNode<T> *x)
{
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x->left != NULL)
return maxKey(x->left); // 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
BSTNode<T>* y = x->parent;
while ((y!=NULL) && (x==y->left))
{
x = y;
y = y->parent;
} return y;
} // 删除二叉树中的节点,并返回被删除的节点
//BSTNode<T>* RemoveNode(BSTNode<T>* &tree, BSTNode<T>* pNode)
//{
// BSTNode<T>* x = tree; // while (NULL != x && pNode->key != x->key)
// {
// if (pNode->key > x->key)
// {
// x = x->right;
// }
// else if (pNode->key < x->key)
// {
// x = x->left;
// }
// } // // 找到或x为空 //}
};

二叉查找树C++实现的更多相关文章

  1. 数据结构:二叉查找树(C语言实现)

    数据结构:二叉查找树(C语言实现) ►写在前面 关于二叉树的基础知识,请看我的一篇博客:二叉树的链式存储 说明: 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: 1.若其左子树不空,则左子树上 ...

  2. 数据结构笔记--二叉查找树概述以及java代码实现

    一些概念: 二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X. 二叉查找树是java的TreeSet和TreeMap类实现的基础. 由于树的递 ...

  3. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  4. 平衡二叉查找树(AVL)的理解与实现

    AVL树的介绍 平衡二叉树,又称AVL(Adelson-Velskii和Landis)树,是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持,而且它必须保证树的深度是 O(log N).一棵AVL ...

  5. 二叉查找树 C++实现(含完整代码)

    一般二叉树的查找是通过遍历整棵二叉树实现,效率较低.二叉查找树是一种特殊的二叉树,可以提高查找的效率.二叉查找树又称为二叉排序树或二叉搜索树. 二叉查找树的定义 二叉排序树(Binary Search ...

  6. 数据结构——二叉查找树、AVL树

    二叉查找树:由于二叉查找树建树的过程即为插入的过程,所以其中序遍历一定为升序排列! 插入:直接插入,插入后一定为根节点 查找:直接查找 删除:叶子节点直接删除,有一个孩子的节点删除后将孩子节点接入到父 ...

  7. Java for LintCode 验证二叉查找树

    给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值.    节点的右子树中的值要严格大于该节点的值.    左右子树也必须是二叉查找树. ...

  8. 数据结构和算法 – 9.二叉树和二叉查找树

      9.1.树的定义   9.2.二叉树 人们把每个节点最多拥有不超过两个子节点的树定义为二叉树.由于限制子节点的数量为 2,人们可以为插入数据.删除数据.以及在二叉树中查找数据编写有效的程序了. 在 ...

  9. 二叉树-二叉查找树-AVL树-遍历

    一.二叉树 定义:每个节点都不能有多于两个的儿子的树. 二叉树节点声明: struct treeNode { elementType element; treeNode * left; treeNod ...

  10. 二叉查找树的Java实现

    为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思路: [1] 关于容器与封装.封装,是一种非常重要的系统设计思想:无论是面向过程的函数,还 ...

随机推荐

  1. C#winform程序关闭计算机的正确姿势

    /// <summary> /// 计算机电源控制类 /// </summary> public class EnvironmentCheckClass { [DllImpor ...

  2. mysql之数据操作

    一 介绍 MySQL数据操作: DML 在MySQL管理软件中,可以通过SQL语句中的DML语言来实现数据的操作,包括 使用INSERT实现数据的插入 UPDATE实现数据的更新 使用DELETE实现 ...

  3. python爬虫下载文件

    python爬虫下载文件 下载东西和访问网页差不多,这里以下载我以前做的一个安卓小游戏为例 地址为:http://hjwachhy.site/game/only_v1.1.1.apk 首先下载到内存 ...

  4. 0.python class

    http://pythonprogramminglanguage.com/ 什么是python? python是一款让你工作比起用其他语言更快的编程语言.老练的程序员用其他的语言会比用python更顺 ...

  5. php 抽象类和接口类

    PHP中抽象类和接口类都是特殊类,通常配合面向对象的多态性一起使用. 相同: ①两者都是抽象类,都不能实例化. ②只有接口类的实现类和抽象类的子类实现了 已经声明的 抽象方法才能被实例化. 不同: ① ...

  6. 使用Linq确定序列是否包含任何元素

    假设我们有一个集合,想要判断这个集合中是否包含任何元素可以使用Linq中的Any() List<string> list = new List<string> { " ...

  7. C#初学者们,请离代码生成器远点!!!

    在程序开发的世界里,各路前辈们为了提高所谓的编码速度,搞出了各式各样的代码生成器,来避免所谓的重复的人为机械地粘贴和复制代码,以此来提高生产力. 早几年前,我可能会认为这样的做法真得有用,特别是在编码 ...

  8. 网络端口地址转换的NAPT配置

    背景:只有一个IP地址,实现内网内多台主机访问外网 原理:NAPT使用不同的端口来映射对各内网的IP地址到一个指定的外网IP地址,多对一. NAPT采用端口多路复用的方式.内部网络的所有主机均可共享一 ...

  9. 前端 IoC 理念入门

    背景 近几年,前端应用(WebApp)正朝着大规模方向发展,在这个过程中我们会对项目拆解成多个模块/组件来组合使用,以此提高我们代码的复用性,最终提高研发效率. 在编写一个复杂组件的时候,总会依赖其他 ...

  10. CSS的box-sizing属性

    box-sizing属性可以为三个值之一:content-box(default),border-box,padding-box. content-box,border和padding不计算入widt ...