倍增求LCA:
father【i】【j】表示节点i往上跳2^j次后的节点
可以转移为

father【i】【j】=father【father【i】【j-1】】【j-1】

整体思路:
先比较两个点的深度,如果深度不同,先让深的点往上跳,浅的先不动,等两个点深度一样时,if 相同 直接返回,if 不同 进行下一步;如果不同,两个点一起跳,j从大到小枚举(其实并不大),如果两个点都跳这么多后,得到的点相等,两个点都不动(因为有可能正好是LCA也有可能在LCA上方),知道得到的点不同,就可以跳上来,然后不断跳,两个点都在LCA下面那层,所以再跳1步即可,当father【i】【j】中j=0时即可,就是LCA,返回值结束

(摘自http://blog.csdn.net/dad3zz)

在网络海洋中搜寻很久后找到hzwer的宽搜求deep序,进行了学习。

以下是我的模板代码:

构造访问数组!

void make_bin()
{
bin[0]=1;
for(int i=1;i<=15;i++)
bin[i]=bin[i-1]<<1;
}

简明易懂邻接表!

void Link()
{
for(int i=1;i<=n-1;i++){//n-1 edges;or you can define a m pointing to the number of edges;
scanf("%d%d",&u[i],&v[i]);
u[i+n-1]=v[i];v[i+n-1]=u[i];//双向;
next[i]=first[u[i]];
next[i+n-1]=first[v[i]];//双向;
first[u[i]]=i;
first[v[i]]=i+n-1;//双向;
isroot[v[i]]=true;
}
}

宽搜!

void bfs()
{
int head=0,tail=1;
q[0]=root,vis[root]=true;
while(head^tail){
int now=q[head];head++;
for(int i=1;i<=15;i++){
if(bin[i]<=deep[now])
fa[now][i]=fa[fa[now][i-1]][i-1];
else break;
}
for(int i=first[now];i;i=next[i])
if(!vis[v[i]]){
vis[v[i]]=true;
fa[v[i]][0]=now;
deep[v[i]]=deep[now]+1;
q[tail++]=v[i];
}
}
}

求lca()

int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=0;i<=15;i++)
if(t&bin[i])x=fa[x][i];
for(int i=15;i>=0;i--)
if(fa[x][i]^fa[y][i])
x=fa[x][i],y=fa[y][i];
if(!(x^y))return y;
return fa[x][0];
}

之后,在poj上找了一个众所周知的例题,poj1330,当做lca入门题

Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 24757   Accepted: 12864

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:


In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor
of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node
x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common
ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest
common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are
labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test
case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

Source

Taejon 2002

Source Code

Problem: 1330   User: ksq2013
Memory: 1224K   Time: 32MS
Language: C++   Result: Accepted

ac代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
bool vis[10100],isroot[10100];
int root,q[10100],deep[10100],fa[10100][20];
int n,bin[20],first[10100],next[10100],u[10100],v[10100];
void make_bin()
{
bin[0]=1;
for(int i=1;i<=15;i++)
bin[i]=bin[i-1]<<1;
}
void Link()
{
for(int i=1;i<=n-1;i++){
scanf("%d%d",&u[i],&v[i]);
//u[i+n-1]=v[i];v[i+n-1]=u[i];
next[i]=first[u[i]];
//next[i+n-1]=first[v[i]];
first[u[i]]=i;
//first[v[i]]=i+n-1;
isroot[v[i]]=true;
}
for(int i=1;i<=n;i++)
if(!isroot[i]){
root=i;
break;
}
}
void bfs()
{
int head=0,tail=1;
q[0]=root,vis[root]=true;
while(head^tail){
int now=q[head];head++;
for(int i=1;i<=15;i++){
if(bin[i]<=deep[now])
fa[now][i]=fa[fa[now][i-1]][i-1];
else break;
}
for(int i=first[now];i;i=next[i])
if(!vis[v[i]]){
vis[v[i]]=true;
fa[v[i]][0]=now;
deep[v[i]]=deep[now]+1;
q[tail++]=v[i];
}
}
}
int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=0;i<=15;i++)
if(t&bin[i])x=fa[x][i];
for(int i=15;i>=0;i--)
if(fa[x][i]^fa[y][i])
x=fa[x][i],y=fa[y][i];
if(!(x^y))return y;
return fa[x][0];
}
int main()
{
make_bin();
int T;
scanf("%d",&T);
for(;T;T--){
memset(vis,false,sizeof(vis));
memset(isroot,false,sizeof(isroot));
memset(q,0,sizeof(q));
memset(fa,0,sizeof(fa));
memset(deep,0,sizeof(deep));
memset(first,0,sizeof(first));
memset(next,0,sizeof(next));
scanf("%d",&n);
Link();
bfs();
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y));
}
return 0;
}

lca入门———树上倍增法(博文内含例题)的更多相关文章

  1. 最近公共祖先算法LCA笔记(树上倍增法)

    Update: 2019.7.15更新 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了. 万分感谢[宁信]大佬,认认真真地审核了本文章,指出了超过五处错误捂脸,太尴尬了 ...

  2. 树上倍增法求LCA

    我们找的是任意两个结点的最近公共祖先, 那么我们可以考虑这么两种种情况: 1.两结点的深度相同. 2.两结点深度不同. 第一步都要转化为情况1,这种可处理的情况. 先不考虑其他, 我们思考这么一个问题 ...

  3. 【37.48%】【hdu 2587】How far away ?(3篇文章,3种做法,LCA之树上倍增)

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  4. LCA离线Tarjan,树上倍增入门题

    离线Tarjian,来个JVxie大佬博客最近公共祖先LCA(Tarjan算法)的思考和算法实现,还有zhouzhendong大佬的LCA算法解析-Tarjan&倍增&RMQ(其实你们 ...

  5. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  6. HDU 2586 倍增法求lca

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. 最近公共祖先 LCA 倍增法

    [简介] 解决LCA问题的倍增法是一种基于倍增思想的在线算法. [原理] 原理和同样是使用倍增思想的RMQ-ST 算法类似,比较简单,想清楚后很容易实现. 对于每个节点u , ancestors[u] ...

  8. 最近公共祖先 LCA (Lowest Common Ancestors)-树上倍增

    树上倍增是求解关于LCA问题的两个在线算法中的一个,在线算法即不需要开始全部读入查询,你给他什么查询,他都能返回它们的LCA. 树上倍增用到一个关键的数组F[i][j],这个表示第i个结点的向上2^j ...

  9. 【bzoj4940】[Ynoi2016]这是我自己的发明 DFS序+树上倍增+莫队算法

    题目描述 给一个树,n 个点,有点权,初始根是 1. m 个操作,每次操作: 1. 将树根换为 x. 2. 给出两个点 x,y,从 x 的子树中选每一个点,y 的子树中选每一个点,如果两个点点权相等, ...

随机推荐

  1. SharePoint 2013 Error - File names can't contain the following characters: & " ? < > # {} % ~ / \.

    错误截图: 错误信息: --------------------------- Message from webpage --------------------------- File names ...

  2. java连接hbase报错

    报错信息如下: The node /hbase is not in ZooKeeper. It should have been written by the master. Check the va ...

  3. MyEclipse 2015免费在线公开课,2月5日开讲

    MyEclipse 2015免费在线公开课,2月5日开讲,由MyEclipse官方高级PM Brian Fernandes 主讲. 主讲内容: 更好地支持javascript和技术模块 全新的REST ...

  4. 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00

    武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...

  5. wordpress语言切换

    如果你想更改WordPress的语言,比如将英文版转换为中文版,或者将中文版转换为英文版,该如何操作?其实很简单,打开网站根目录下的 wp-config.php,然后搜索 define('WPLANG ...

  6. List集合概述

    上篇总结了Set集合,这回总结下List集合....先来框架图: 一.List集合 List集合代表一个元素有序,可重复的集合,集合中每个元素都有对应的顺序索引.List接口中增加了一些根据索引操作元 ...

  7. Android IPC机制之AIDL

    什么是AIDL AIDL:Android Interface Definition Language,即Android接口定义语言. Android系统中的进程之间不能共享内存,因此,需要提供一些机制 ...

  8. Java 线程通信

    线程通信用来保证线程协调运行,一般在做线程同步的时候才需要考虑线程通信的问题. 1.传统的线程通信 通常利用Objeclt类提供的三个方法: wait() 导致当前线程等待,并释放该同步监视器的锁定, ...

  9. PHP判断访问者手机移动端还是PC端的函数,亲测好用

    ,用手机访问PC端WWW域名的时候,自动判断跳转到移动端,用电脑访问M域名手机网站的时候,自动跳转到PC端,我们团队在开发erdaicms二代旅游CMS网站管理系统的时候(http://www.erd ...

  10. 写在复习MVC后

    MVC的一些 今天把MVC复习了下,包括官方文档以及各种中文博客. 官方文档里面最能说明的问题的图片,相对于传统的MVC,苹果分离了View和Model之间的通信,实现了更好的复用性.我觉得MVC更 ...