Todd's Matlab讲义第5讲:二分法和找根
二分法和if ... else ... end 语句
先回顾一下二分法。要求方程\(f(x)=0\)的根。假设\(c = f(a) < 0\)和\(d = f(b) > 0\),如果\(f(x)\)是连续函数,那么方程的根\(x^*\)一定位于\(a\)和\(b\)之间。然后,我们看一下\(a\)和\(b\)中点\(x=(a+b)/2\),计算函数值\(y=f(x)\),如果函数不为0,比较\(c\)、\(d\)和\(y\)的符号,确定新的二分区间。具体来说,如果\(c\)和\(y\)同号,新的二分区间就是\([x,b]\),如果\(c\)和\(y\)异号,新的二分区间就是\([a,x]\)。如图5.1所示。
图5.1 二分法
在不同的情况下做不同的事情,在程序里,这叫做流程控制。达到这个目的,最通常的方法是通过if ... else ... end语句来实现,这个语句是我们前面讲过的if ... end语句的扩展。
误差界
二分法的一个好处是,我们一直知道方程的真实的根\(x^*\)一定位于二分区间内,这样我们就可以知道最大误差可以是多少,一定小于区间大小的一半,即
\begin{equation*}
\mid x-x^* \mid \lt \frac{b-a}{2}
\end{equation*}
其中\(x=(a+b)/2\),为区间的中点。
二分法程序如下:
function [x e] = mybisect (f,a,b,n)
% function [x e] = mybisect (f,a,b,n)
% Does n iterations of the bisection method for a function f
% Inputs : f -- an inline function
% a,b -- left and right edges of the interval
% n -- the number of bisections to do.
% Outputs : x -- the estimated solution of f(x) = 0
% e -- an upper bound on the error
format long
% evaluate at the ends and make sure there is a sign change
c = f(a); d = f(b);
if c*d > 0.0
error (’Function has same sign at both endpoints .’)
end
disp (’ x y’)
for i = 1:n
% find the middle and evaluate there
x = (a + b )/2;
y = f(x);
disp ([ x y])
if y == 0.0 % solved the equation exactly
e = 0;
break % jumps out of the for loop
end
% decide which half to keep , so that the signs at the ends differ
if c*y < 0
b=x;
else
a=x;
end
end
% set the best estimate for x and the error bound
x = (a + b )/2;
e = (b-a )/2;
此程序不仅给出了方程的近似根,还给出了最大可能误差。
二分法总是可以进行下去,而牛顿法,如果初值\(x_0\)不足够接近\(x^*\)的话,程序可能不会收敛。而二分法,每一步的区间都可以缩一半,最终想缩多小就能缩多小。
找根
二分法和牛顿法都可以用来找根的任意近似值,但都需要先给定初值。二分法需要两个初值\(a\)和\(b\),并要求真实的根位于二者之间,牛顿法只需要一个初值\(x_0\),要求不能离真实的根太远。如何确定合适的初值?看情况而定。如果你一次只解一个方程,最好先把函数画出来,通过图上的函数零点,可以很容易定出合适的初值。
有些情况下你不是一次就解一个方程,而是多次求解同一个方程,只是系数不同。当你开发某特定用途的软件的时候,常常会遇到这种情况。在这种情况下,首先你要利用问题的自然条件,比如选定的区间要符号实际情况。然后通过区间内某些点的符号,很容易就可以逐渐接近方程的真实的根了。方程的根一定位于符号相异的两点之间。下面的程序就是在一给定的区间\([a_0,b_0]\)之间找方程的根:
function [a,b] = myrootfind (f,a0 ,b0)
% function [a,b] = myrootfind (f,a0 ,b0)
% Looks for subintervals where the function changes sign
% Inputs : f -- an inline function
% a0 -- the left edge of the domain
% b0 -- the right edge of the domain
% Outputs : a -- an array , giving the left edges of subintervals
% on which f changes sign
% b -- an array , giving the right edges of the subintervals
n = 1001; % number of test points to use
a = []; % start empty array
b = [];
% split the interval into n -1 intervals and evaluate at the break points
x = linspace (a0 ,b0 ,n);
y = f(x);
% loop through the intervals
for i = 1:(n -1)
if y(i)*y(i +1) < 0 % The sign changed , record it
a = [a x(i)];
b = [b x(i +1)];
end
end
if size (a ,1) == 0
warning (’no roots were found ’)
end
如果没有任何已知信息来找方程的根,事情就比较难办,好在这种情况在工程问题里不常见。
一旦确定出根所在的区间\([a, b]\),\(a\)和\(b\)就可以作为二分法和割线法(见下一讲)的初值。对于牛顿法,初值\(x_0\)一个明显的选法是\(x_0 = (a + b)/2\)。一个更好的选法是利用割线法选\(x_0\)。
练习
1 修改程序mybisect,在给定公差下解方程。应用你的程序,求解方程\(f(x) = 2x^3 + 3x − 1=0\)的根,初始区间是\([0,1]\),公差为\(10^{-8}\)。程序需要运行多少步能达到公差的要求?最终残量有多大?
2 用纸和计算器对于函数\(f(x) = x^3 − 4\)和初始区间\([1,3]\)进行3步二分法迭代,计算每步结果的误差和相对误差,并与第3讲练习3的结果比较。
Todd's Matlab讲义第5讲:二分法和找根的更多相关文章
- Todd's Matlab讲义第4讲:控制误差和条件语句
误差和残量 数值求解方程\(f(x)=0\)的根,有多种方法测算结果的近似程度.最直接的方法是计算误差.第\(n\)步迭代结果与真值\(x^\*\)的差即为第\(n\)步迭代的误差: \begin{e ...
- Todd's Matlab讲义第3讲:牛顿法和for循环
方程数值求解 下面几讲,我们将聚集如下方程的解法: \begin{equation} f(x)=0 \tag{3.1}\label{3.1} \end{equation} 在微积分课程中,我们知道,许 ...
- Todd's Matlab讲义第2讲:Matlab 编程
Matlab也可以编程,可存为以.m为后缀的文件,称为M文件.M文件有两种:函数和脚本. 函数程序 点击新建图标,在打开的窗口里输入如下内容: function y = myfunc (x) y = ...
- Todd's Matlab讲义第1讲:向量,函数和作图
向量 Matlab 中最基本的对象是矩阵,向量是特殊的矩阵.行向量是\(1\times n\)矩阵,列向量是\(m\times 1\)矩阵.输入如下行向量: >> v=[0 1 2 3] ...
- Todd's Matlab讲义第6讲:割线法
割线法 割线法求解方程\(f(x)=0\)的根需要两个接近真实根\(x^\*\)的初值\(x_0\)和\(x_1\),于是得到函数\(f(x)\)上两个点\((x_0,y_0=f(x_0))\)和\( ...
- 二分法和牛顿迭代实现开根号函数:OC的实现
最近有人贴出BAT的面试题,题目链接. 就是实现系统的开根号的操作,并且要求一定的误差,其实这类题就是两种方法,二分法和牛顿迭代,现在用OC的方法实现如下: 第一:二分法实现 -(double)sqr ...
- Python实现二分法和黄金分割法
运筹学课上,首先介绍了非线性规划算法中的无约束规划算法.二分法和黄金分割法是属于无约束规划算法的一维搜索法中的代表. 二分法:$$x_{1}^{(k+1)}=\frac{1}{2}(x_{R}^{(k ...
- Flow construction SGU - 176 有源汇有上下界最小流 二分法和回流法
/** 题目:Flow construction SGU - 176 链接:https://vjudge.net/problem/SGU-176 题意: 有源汇有上下界的最小流. 给定n个点,m个管道 ...
- Matlab 之meshgrid, interp, griddata 用法和实例
http://blog.sina.com.cn/s/blog_67f37e760101bu4e.html 实例结果http://wenku.baidu.com/link?url=SiGsFZIxuS1 ...
随机推荐
- [iOS 视频流开发-获得视频帧处理]
调用视频流所使用框架:<Foundation/Foundation.h> 必须定义的参数: 1.AVCaptureDevice(捕获设备:前置.后置摄像头等) 2.AVCaptureInp ...
- IOS - Create Push Segue Animation Without UINavigationController
APPLE提供了三种storyboard segue的方式:push,modal,custom . push segue是系统预定义的跳转方式, 为了使其能正常工作,我们还必须加载UINavigati ...
- HTML5系列三(多媒体播放、本地存储、本地数据库、离线应用)
各浏览器对编码格式的支持情况 audio和video元素的属性介绍 1.src:媒体数据的URL地址 <video src="pr6.mp4"></video&g ...
- css3之2D转换
css3---2D转换 css3中出现了许多新的特性,其中2D转换我觉的非常有意思,通过她,我们能够对元素进行移动.缩放.转动.拉长或者拉伸,所以希望在这里和大家分享一下. 这里,我将会介绍到以下转换 ...
- JS-DOM 综合练习-动态添加删除班级成绩表
费了2个小时,才把原理弄懂,把问题逐个解决,当你发现你最后栽的那个点,是一个小石头拌的你,你起来是该哭还是该笑呢?只怪自己习武不精吧. 虽然问题都解决了,但是还有一个余留的问题就是鼠标经过input时 ...
- web项目中的跨域问题解决方法
一种是JSONP 一种是 CORS. 在客户端Javascript调用服务端接口的时候,如果需要支持跨域的话,需要服务端支持. JSONP的方式就是服务端对返回的值进行回调函数包装,他的优点是支持众多 ...
- mysql修改引擎
1 查看系统支持的存储引擎 show engines; 2 查看表使用的存储引擎 两种方法: a.show table status from db_name where name='table_na ...
- CS架构和BS架构的区别
C/S结构,即Client/Server(客户机/服务器)结构,是大家熟知的软件系统体系结构,通过将任务合理分配到Client端和Server端,降低了系统的通讯开销,可以充分利用两端硬件环境的优势. ...
- Redis+Spring缓存实例
转自:小宝鸽 一.Redis了解 1.1.Redis介绍: redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).lis ...
- Eratosthenes筛选法构造1-n 素数表
筛选法:对于不超过n的每个非负整数p,删除2p,3p,4p...当处理完所有数之后,还没没删除的就是素数. 代码中进行了相应的优化. 本代码功能,输入一个数,输出从1-该数之间的素数.功能待完善,可将 ...