POJ 3292 Semi-prime H-numbers
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6873 | Accepted: 2931 |
Description
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.
An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.
As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.
For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.
Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.
Input
Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.
Output
For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.
Sample Input
21
85
789
0
Sample Output
21 0
85 5
789 62
Source
Waterloo Local Contest, 2006.9.30
#include <iostream>
#include <cstdio> #include <cstring> using namespace std; const int MAXN=1000100; int H[MAXN],cnt[MAXN]; void Init() int main() |
* This source code was highlighted by YcdoiT. ( style: Codeblocks )
POJ 3292 Semi-prime H-numbers的更多相关文章
- 【POJ 3292】 Semi-prime H-numbers
[POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...
- POJ 3292 Semi-prime H-numbers (素数筛法变形)
题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...
- Day7 - I - Semi-prime H-numbers POJ - 3292
This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...
- POJ 3126:Prime Path(素数+BFS)
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that ...
- 【POJ】1811 Prime Test
http://poj.org/problem?id=1811 题意:求n最小素因子.(n<=2^54) #include <cstdio> #include <cstring& ...
- POJ 3292
Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7059 Accepted: 3 ...
- POJ 2560 Freckles Prime问题解决算法
这个问题正在寻求最小生成树. 给定节点的坐标,那么我们需要根据各个点之间的这些坐标来计算距离. 除了这是标准的Prime算法的,能源利用Prime基本上,你可以使用Kruskal. 经典的算法必须填写 ...
- poj 3925 枚举+prime
/* 因为15很小可以暴力枚举然后用最小生成树的prim来计算 */ #include<stdio.h> #include<string.h> #include<math ...
- 【POJ 2689】 Prime Distance
[题目链接] http://poj.org/problem?id=2689 [算法] 我们知道,一个在区间[l,r]中的合数的最小质因子必然不超过sqrt(r) 那么,先暴力筛出1-50000中的质数 ...
随机推荐
- shutil模块
shutil模块 提供了大量的文件的高级操作,特别针对文件拷贝和删除,主要功能为目录和文件操作以及压缩操作 常用方法 shutil.copyfile(src, dst) 复制文件内容(不包含元数据)从 ...
- Simultaneous Tag Editing in IntelliJ IDEA 14.1
If you're involved in web development and, for some reason, you haven't given a ride to IntelliJ IDE ...
- Linux Basis --- commands of vi
EDIT mode to GENERAL mode: press ESC general mode: CLOSE FILE :q! :force to close the file but no ...
- JAVASE 面试总结(1)
1.什么是Java虚拟机?为什么Java被称作是"平台无关的编程语言"?Java虚拟机是一个可以执行Java字节码的虚拟机进程.Java源文件被编译成能被Java虚拟机执行的字节码 ...
- 一种M2M业务的架构及实现M2M业务的方法
http://www.cnblogs.com/coryxie/p/3849764.html 技术领域 [0001] 本发明涉及通信技术领域,尤其涉及一种M2M业务的架构及实现M2M业务的方法. 背景技 ...
- ORACLE 错误:oralce record is locked by another user
方法/步骤 打开PL/SQL客户端,然后修改表记录中的数据,提交修改,如下提示 步骤阅读 2 我们关闭异常警告窗口,在执行sql的窗口中输入如下命令:select t2.username,t ...
- shell操作mysql之增删改查
假设mysql用户名root 密码123456,新建测试数据表utable 脚本如下: #!/bin/bash#mysqlop.shmysql="/app/local/mysql/bin/m ...
- 使用.net Stopwatch class 来分析你的代码
当我们在调试,优化我们的代码的时候,想知道某段代码的真正的执行时间,或者我们怀疑某段代码,或是某几段代码执行比较慢, 需要得到具体的某段代码的具体执行时间的时候.有一个很好用的类Stopwatch. ...
- UI控件之ListView
一,一个简单的TextView列表 public class FirstActivity extends Activity { private String[] data = {"Apple ...
- Robot Framework--11 RF结合Jenkins
转自:http://blog.csdn.net/tulituqi/article/details/17846463 为什么我们要引入RF?其实最初我们引入RF是为了能够快速的开展自动化验收测试,为敏捷 ...