类似素数筛。。。
Semi-prime H-numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 6873 Accepted: 2931

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62

Source

Waterloo Local Contest, 2006.9.30

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const int MAXN=1000100;

int H[MAXN],cnt[MAXN];

void Init()
{
    for(int i=1;i<MAXN;i+=4)
    {
        H=1;
        for(int j=5;j*j<=i;j+=4)
        {
            if(i%j==0)
            {
                H=j;
                break;
            }
        }
    }
    for(int i=5;i<MAXN;i+=4)
    {
        cnt=cnt[i-4];
        if(H!=1&&H[i/H]==1)
        {
            cnt++;
        }
    }
}

int main()
{
    Init();
    int n;
    while(scanf("%d",&n)!=EOF&&n)
    {
        printf("%d %d\n",n,cnt[n]);
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 3292 Semi-prime H-numbers的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. Day7 - I - Semi-prime H-numbers POJ - 3292

    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...

  4. POJ 3126:Prime Path(素数+BFS)

    The ministers of the cabinet were quite upset by the message from the Chief of Security stating that ...

  5. 【POJ】1811 Prime Test

    http://poj.org/problem?id=1811 题意:求n最小素因子.(n<=2^54) #include <cstdio> #include <cstring& ...

  6. POJ 3292

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7059   Accepted: 3 ...

  7. POJ 2560 Freckles Prime问题解决算法

    这个问题正在寻求最小生成树. 给定节点的坐标,那么我们需要根据各个点之间的这些坐标来计算距离. 除了这是标准的Prime算法的,能源利用Prime基本上,你可以使用Kruskal. 经典的算法必须填写 ...

  8. poj 3925 枚举+prime

    /* 因为15很小可以暴力枚举然后用最小生成树的prim来计算 */ #include<stdio.h> #include<string.h> #include<math ...

  9. 【POJ 2689】 Prime Distance

    [题目链接] http://poj.org/problem?id=2689 [算法] 我们知道,一个在区间[l,r]中的合数的最小质因子必然不超过sqrt(r) 那么,先暴力筛出1-50000中的质数 ...

随机推荐

  1. AngularJs form.FormController、ngModel.NgModelController

    form.FormController FormController跟踪所有他所控制的和嵌套表单以及他们的状态,就像有效/无效或者脏值/原始. 每个表单指令创建一个FormController实例. ...

  2. Linux 吃掉我的内存

    在Windows下资源管理器查看内存使用的情况,如果使用率达到80%以上,再运行大程序就能感觉到系统不流畅了,因为在内存紧缺的情况下使用交换分区,频繁地从磁盘上换入换出页会极大地影响系统的性能.而当我 ...

  3. iOS - CALayer相关(CATransform3D)

    一.图层的几何 图层的几何简单通俗,图层的所有几何属性(包括矩阵变换),都可以有隐式和显式动画. 图层几何的属性: 1.position是CGPoint值,她指定图层相对于她图层的位置,该值基于父图层 ...

  4. [USACO2009 NOV GOLD]奶牛的图片

    校内题,不给传送门了. 以前做完NOIp2013的火柴排队那道题后,当时很担心NOIp会出那种题,因为贪心的规则能不能看出来真的要看运气.但是这类题做多了后发现其实那道题的规则其实是很多题都已经用到了 ...

  5. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

  6. mybatis的逆向工程

    mybatis的逆向工程是很大的减少了程序员对代码的编写工作,由于mybatis是半自动的sql语句使用,我们在项目中一般都是采用逆向工程来生成mybatis的文件,mapper接口相当于我们平常所说 ...

  7. phpcms v9 数据库操作函数

    表明默认当前load_model('xxxx')模块所在表名xxxx 若要指定表名  则:操作在mysql.class.php中$this->db->select(...) 1.查询  $ ...

  8. 结合Hadoop,简单理解SSH

    在启动dfs和yarn时,需要多次输入密码,不但启动本机进程还有辅服务器启动那些节点也需要相应密码,主与辅服务器之间是通过SSH连接的,并发送操作指令 一.ssh密码远程登录 1.使用ssh连接另一台 ...

  9. ERROR 1130 (HY000) Host ‘hostname’ is not allowed to connect to this MySQL server

    GRANT ALL PRIVILEGES ON *.* TO 'root'@'%'; FLUSH PRIVILEGES;

  10. centos 7.0 菜鸟接触命令 记录

    centos 7.0 最小化安装 查看IP ip addr 查看外网IP curl ifconfig.me 重启 shutdown -r now 安装wget yum -y install wget ...