知识要点

  首先介绍一下曼哈顿,曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走AC和 CB才能到达,由于街道很规则,ACB就像一个直角3角形,AB是斜边,AC和CB是直角边,根据毕达格拉斯(勾股)定理,或者向量理论,都可以知道用AC和CB可以表达AB的长度。

  在早期的计算机图形学中,屏幕是由像素构成,是整数,点的坐标也一般是整数,原因是浮点运算很昂贵,很慢而且有误差,如果直接使用AB的距离,则必须要进行浮点运算,如果使用AC和CB,则只要计算加减法即可,这就大大提高了运算速度,而且不管累计运算多少次,都不会有误差。因此,计算机图形学就借用曼哈顿来命名这一表示方法。

  曼哈顿距离:两点在南北方向上的距离加上在东西方向上的距离,即d(i,j)=|xi-xj|+|yi-yj|。对于一个具有正南正北、正东正西方向规则布局的城镇街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离。

  通过分析下面的题目,可知其可以应用曼哈顿距离计算至(1,1)点最近的点,依据曼哈顿距离即可计算出结果值。

  代码如下

 /**
* 解救小易
有一片1000*1000的草地,小易初始站在(1,1)(最左上角的位置)。小易在每一秒会横向或者纵向移动到相邻的草地上吃草(小易不会走出边界)。
大反派超超想去捕捉可爱的小易,他手里有n个陷阱。第i个陷阱被安置在横坐标为xi ,纵坐标为yi 的位置上,小易一旦走入一个陷阱,将会被超超捕捉。
你为了去解救小易,需要知道小易最少多少秒可能会走入一个陷阱,从而提前解救小易。
输入描述:
第一行为一个整数n(n ≤ 1000),表示超超一共拥有n个陷阱。
第二行有n个整数xi,表示第i个陷阱的横坐标
第三行有n个整数yi,表示第i个陷阱的纵坐标
保证坐标都在草地范围内。 输出描述:
输出一个整数,表示小易最少可能多少秒就落入超超的陷阱 输入例子:
3
4 6 8
1 2 1
输出例子:
3
思路:
计算最短距离
*/ #include <iostream>
#include <vector>
using namespace std; int main(void){
int trapNum; while (cin >> trapNum){
if (trapNum <= || trapNum > )
continue;
// vector<int> dx;
// vector<int> dy;
vector<int> dx(trapNum);//指定容器大小,否则会溢出
vector<int> dy(trapNum);
for (int i = ; i < trapNum; i++)
cin >> dx[i];
for (int i = ; i < trapNum; i++)
cin >> dy[i]; int result = ;
//枚举一遍维护最小值
for (int i = ; i < trapNum; i++){
int length = (dx[i] - ) + (dy[i] - );
if (length < result)
result = length;
}
cout << result << endl;
}
return ;
}

剑指Offer——网易笔试之解救小易的更多相关文章

  1. 剑指Offer——网易笔试之解救小易——曼哈顿距离的典型应用

    剑指Offer--网易笔试之解救小易--曼哈顿距离的典型应用 前言 首先介绍一下曼哈顿,曼哈顿是一个极为繁华的街区,高楼林立,街道纵横,从A地点到达B地点没有直线路径,必须绕道,而且至少要经C地点,走 ...

  2. 剑指Offer——网易笔试之不要二——欧式距离的典型应用

    剑指Offer--网易笔试之不要二--欧式距离的典型应用 前言 欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的 ...

  3. 剑指Offer——网易校招内推笔试题+模拟题知识点总结

    剑指Offer--网易校招内推笔试题+模拟题知识点总结 前言 2016.8.2 19:00网易校招内推笔试开始进行.前天晚上利用大约1小时时间完成了测评(这个必须做,关切到你能否参与面试).上午利用2 ...

  4. 剑指Offer——网易笔试题+知识点总结

    剑指Offer--网易笔试题+知识点总结 Fibonacci package cn.edu.ujn.nk; import java.util.ArrayList; import java.util.S ...

  5. 剑指Offer——面试小提示(持续更新中)

    (1)应聘者在电话面试的时候应尽可能用形象的语言把细节说清楚. (2)假设在英语面试时没有听清或没有听懂面试官的问题,应聘者要敢于说Pardon. (3)在共享桌面远程面试中.面试官最关心的是应聘者的 ...

  6. 《剑指offer》内容总结

    (1)剑指Offer——Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种哈希树的变种.典型应用是统计和排序大量的字符串(但不仅限于字符串),所以经常 ...

  7. 剑指Offer——毕业生求职网站汇总(干货)

    剑指Offer--毕业生求职网站汇总(干货) 致2017即将毕业的你~ 精品网站 牛客网:https://www.nowcoder.com 赛码网:http://www.acmcoder.com/ 招 ...

  8. 剑指Offer——顺丰笔试题+知识点总结

    剑指Offer--顺丰笔试题+知识点总结 情景回顾 时间:2016.10.16 19:00-20:40 地点:山东省网络环境智能计算技术重点实验室 事件:顺丰笔试 知识点总结 快排 霍尔排序(快排) ...

  9. 剑指Offer——知识点储备-Java基础

    剑指Offer--知识点储备-Java基础 网址来源: http://www.nowcoder.com/discuss/5949?type=0&order=0&pos=4&pa ...

随机推荐

  1. Objective-C上地球坐标系到火星坐标系转换算法

    Objective-C上地球坐标系到火星坐标系转换算法 http://blog.csdn.net/zhaoxy_thu/article/details/17033347

  2. servlet之session添加和移除的两种方式

    Java Session 介绍 一.添加.获取session 1.项目结构 2.jar包 3.web.xml文件 <?xml version="1.0" encoding=& ...

  3. 浅析for in 和for的区别

    区别一: for in是javascript 1.0 中发布的. for each in是作为E4X标准的一部分在javascript 1.6中发布的,而它不是ECMAScript标准的一部分. 这将 ...

  4. 一个C#的与web服务器交互的HttpClient类

    using System; using System.Collections.Generic; using System.IO; using System.Text; using System.Net ...

  5. 【转】MySQL数据类型和常用字段属性总结

    来源:http://www.jb51.net/article/55853.htm 这里先总结数据类型.MySQL中的数据类型大的方面来分,可以分为:日期和时间.数值,以及字符串.下面就分开来进行总结. ...

  6. TCP(传输控制协议)和三次握手和四次断开

    TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF的RFC 793定义.在简化的计算机网络OSI模型中, ...

  7. Java设计模式 之 代理模式

    所谓的代理模式就是为其它类或对象提供一个代理以控制对这个对象的访问.那么常见的代理有远程代理,虚拟代理,保护代理,智能代理. 1. 远程代理:为一个不同地址空间的对象提供一个本地代理对象. 2. 虚拟 ...

  8. BZOJ1483——[HNOI2009]梦幻布丁

    1.题目大意:这题就是给你一个序列,有两个操作,一个是询问序列中的连续段数,比如序列 1 2 2 1就是三段.. 1是一段,2 2 又是一段,1又是一段,就是相同的在一起,第二个操作就是将其中的一种数 ...

  9. [KOJ6023]合并果子·改

    [COJ6023]合并果子·改 试题描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多把这些果子堆排成一排,然后所有的果子合成一堆.    每一次合并,多多可以 ...

  10. const 和宏的区别

    参考:http://blog.sina.com.cn/s/blog_79b01f6601018xdg.html (1) 编译器处理方式不同 define宏是在预处理阶段展开. const常量是编译运行 ...