[codeforces 55]D. Beautiful numbers

试题描述

Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

输入

The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri(1 ≤ li ≤ ri ≤ 9 ·1018).

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

输出

Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).

输入示例


输出示例


数据规模及约定

见“输入

题解

“能同时被所有数位上的数字整除”等价于“能被所有数位上数字的最大公约数整除”。于是设 f[i][k][m] 表示一个 i 位的数,所有数字的最小公倍数等于 k,且这个数为 m。等等,状态 m 都知道这个数了,那 dp 个啥?别着急,我们一步步优化。

我们知道 lcm(1, 2, 3, 4, 5, 6, 7, 8, 9) = 2520(就是1~9的最小公倍数),那么对于刚才 m 的那一维状态是没有必要太大的,将这维状态对 2520 取个模就好了,即 m 表示这个数对 mod 2520 的值。

还有,1~9 这些数中,所有可能出现的最小公倍数只有 48 个(这个不妨读者自己写程序统计一下),所以离散一波 k 就变成最大只有 48 的数了。

最后状态数大概是:19 * 48 * 2520 = 2298240。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 21
#define maxm 2521
#define maxc 49
int Lcm[maxc], cl, id[maxm], Gcd[maxm][maxm];
bool tmp[maxm];
LL f[maxn][maxc][maxm], ten[maxn]; int gcd(int x, int y){ return !y ? x : gcd(y, x % y); } int get(int l, int x) {
int nl;
if(!x && !l) nl = 0;
if(x && l) nl = l * x / Gcd[l][x];
if(!x && l) nl = l;
if(x && !l) nl = x;
return nl;
} int num[maxn];
LL sum(LL x) {
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0; int l = 1;
for(int i = cnt; i; i--) {
for(int j = 0; j < num[i]; j++) {
int nl = get(l, j);
for(int k = 0; k <= cl; k++) {
int nnl = get(nl, Lcm[k]);
LL t;
if(i < cnt) t = (tx / ten[i] * ten[i] + ten[i-1] * j) % 2520;
else t = ten[i-1] * j % 2520;
for(int m = 0; m < maxm - 1; m += nnl) {
int M = (m - t + 2520) % 2520; if(M < 0) continue;
if(f[i-1][k][M]) ans += f[i-1][k][M];
}
}
}
l = get(l, num[i]);
}
if(tx % l == 0) ans++;
return ans;
} int main() {
for(int i = 1; i < maxm; i++)
for(int j = 1; j < maxm; j++) Gcd[i][j] = gcd(i, j); tmp[1] = 1;
for(int j = 2; j <= 9; j++)
for(int x = maxm - 1; x; x--)
if(tmp[x]) tmp[x*j/Gcd[x][j]] = 1;
for(int i = 1; i < maxm; i++)
if(tmp[i]) Lcm[++cl] = i, id[i] = cl; ten[0] = 1;
for(int i = 1; i < maxn; i++) ten[i] = ten[i-1] * 10; f[0][0][0] = 1;
for(int j = 0; j <= 9; j++) f[1][id[j]][j] = 1;
for(int i = 1; i < maxn - 1; i++)
for(int k = 0; k <= cl; k++)
for(int m = 0; m < maxm; m++) if(f[i][k][m]) {
int l = Lcm[k];
for(int x = 0; x <= 9; x++) {
int nl = get(l, x);
f[i+1][id[nl]][(ten[i]*x+m)%2520] += f[i][k][m];
}
}
int T = read();
while(T--) {
LL l = read(), r = read();
printf("%I64d\n", sum(r) - sum(l - 1));
} return 0;
}

[codeforces 55]D. Beautiful numbers的更多相关文章

  1. CF 55 D. Beautiful numbers

    D. Beautiful numbers 链接 题意: 求[L,R]中多少个数字可以整除它们的每一位上的数字. 分析: 要求模一些数字等于0等价于模它们的lcm等于0,所以可以记录当前出现的数字的lc ...

  2. 【Codeforces 300C】Beautiful Numbers

    [链接] 我是链接,点我呀:) [题意] 让你找到长度为n的数字 这个数字只由a或者b组成 且这n个数码的和也是由a或者b组成的 求出满足这样要求的数字的个数 [题解] 枚举答案数字中b的个数为y,那 ...

  3. CF D. Beautiful numbers (数位dp)

    http://codeforces.com/problemset/problem/55/D Beautiful Numbers : 这个数能整除它的全部位上非零整数.问[l,r]之间的Beautifu ...

  4. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  5. Codeforces Beta Round #51 D. Beautiful numbers 数位dp

    D. Beautiful numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/p ...

  6. codeforces Beautiful Numbers

    来源:http://codeforces.com/problemset/problem/1265/B   B. Beautiful Numbers   You are given a permutat ...

  7. Codeforces Round #181 (Div. 2) C. Beautiful Numbers 排列组合 暴力

    C. Beautiful Numbers 题目连接: http://www.codeforces.com/contest/300/problem/C Description Vitaly is a v ...

  8. Codeforces Beta Round #51 D. Beautiful numbers

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  9. CodeForces 55D "Beautiful numbers"(数位DP+离散化处理)

    传送门 参考资料: [1]:CodeForces 55D Beautiful numbers(数位dp&&离散化) 我的理解: 起初,我先定义一个三维数组 dp[ i ][ j ][ ...

随机推荐

  1. SQL Server编程(03)自定义存储过程

    存储过程是一组预编译的SQL语句,它可以包含数据操纵语句.变量.逻辑控制语句等. 存储过程允许带参数: 输入参数:可以在调用时向存储过程传递参数,此类参数可用来向存储过程中传入值(可以有默认值) 输出 ...

  2. css001 Css需要的html

    Css需要的html 可以忘却的html属性和标签 1.不要用<font>来控制字体的大小和类型.(那要用什么?见第六章) 2.不要用<b>和<i>(b和i只是把字 ...

  3. angular 兼容ie7 实现

    <script src="~/Content/js/angular.min.js"></script><script src="~/Cont ...

  4. 通过XHR  API来下载和上传图片

    1.不用HTML中的img标签来下载图片,通过XHR  api来下载图片: var xhr = new XMLHttpRequest(); xhr.open('GET','/img/tooth-int ...

  5. OpenGL Pixel Linked-List

    Keywords: opengl linked list http://on-demand.gputechconf.com/gtc/2014/presentations/S4385-order-ind ...

  6. Asp.NET的Trace追踪

    http://m.blog.csdn.net/article/details?id=7026402 当我们扑捉程序错误时,调试器是开发者们最得力的助手.然而,ASP.NET的跟踪,在调试时是一个很棒的 ...

  7. MIME类型(JSP中)

    什么是MIME类型-在把输出结果传送到浏览器上的时候,浏览器必须启动是党的应用程序来处理这个输出文档.这可以通过多种类型MIME(多功能网际邮件扩充协议)来完成.在HTTP中,MIME类型被定义在Co ...

  8. javascript模块简单写法

    写法1: (function (wd, doc) { var mw = {}; mw.noConflict = noConflict; var _$ = wd.$; wd.$ = mw; functi ...

  9. SQLServer中获取特定表的所有列名

    1.获取特定表的所有列名: Select Name FROM SysColumns Where id=Object_Id('tableName') 参考:http://blog.csdn.net/wu ...

  10. inet_ntoa、 inet_aton、inet_addr

    inet_addr()   简述:将一个点间隔地址转换成一个in_addr. #include <winsock.h> unsigned long PASCAL FAR inet_addr ...