题意:排序二叉树按照数插入的顺序不同会出现不同的结构,现在要在1~m选n个数,使按顺序插入形成的结构与给出的结构相同,有多少种选法。

解法:先将给出的结构插入,构造出一棵排序二叉树,再dfs统计,首先赋ans = C(m,n),从m个数中取n个数,然后将这n个数安排插入顺序,dfs,如果此时节点左右子树都有,那么其实左右子树的插入顺序可以相间,所有就是一个排列保持相对顺序不变地插入另一个保持相对顺序不变的序列中,有多少种插入方法呢,如果一个序列个数为k1,另一个为k2,那么方法数为:C(k1+k2,k1) = C(k1+k2,k2), 因为总共k1+k2个位置,我们从两个序列中选择k1或k2个位置,那么放入序列只有一种方式,那么其余的k2或k1个就定了。所以dfs求下去即可得出最后答案。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define SMod 1000003
#define ll long long
using namespace std; int C[][],Node;
int siz[],ch[][],val[];
ll ans; void Insert(int rt,int k) {
if(val[rt] == ) {
val[rt] = k;
siz[rt] = ;
ch[rt][] = ch[rt][] = ;
return;
}
if(k < val[rt]) { //left
if(ch[rt][] == ) ch[rt][] = ++Node;
Insert(ch[rt][],k);
}
else {
if(ch[rt][] == ) ch[rt][] = ++Node;
Insert(ch[rt][],k);
}
siz[rt] = siz[ch[rt][]]+siz[ch[rt][]]+;
return;
} void calc() {
C[][] = ;
for(int i = ; i < ; i++) {
C[i][] = ;
for(int j = ; j <= i; j++)
C[i][j] = (C[i - ][j] + C[i - ][j - ]) % SMod;
}
} void dfs(int u) {
if(ch[u][] && ch[u][]) {
int lsiz = siz[ch[u][]];
int rsiz = siz[ch[u][]];
//cout<<"l,rsiz = "<<lsiz<<" "<<rsiz<<endl;
ans = ans*C[lsiz+rsiz][lsiz]%SMod;
}
if(ch[u][]) dfs(ch[u][]);
if(ch[u][]) dfs(ch[u][]);
} int main()
{
int t,n,m,i,x;
calc();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
ans = (ll)C[m][n];
memset(val,,sizeof(val));
memset(siz,,sizeof(siz));
memset(ch,,sizeof(ch));
scanf("%d",&val[]);
Node = siz[] = ;
ch[][] = ch[][] = ;
for(i=;i<=n;i++) {
scanf("%d",&x);
Insert(,x);
}
dfs();
cout<<ans<<endl;
}
return ;
}

UVALive 5058 Counting BST --组合数的更多相关文章

  1. UVALive 5058 Counting BST 数学

    B - Counting BST Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit S ...

  2. UVALive 3295 Counting Triangles

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  3. poj3046 Ant Counting——多重集组合数

    题目:http://poj.org/problem?id=3046 就是多重集组合数(分组背包优化): 从式子角度考虑:(干脆看这篇博客) https://blog.csdn.net/viphong/ ...

  4. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  5. UVaLive 7143 Room Assignment (组合数+DP)

    题意:有 n 个客人,m个房间,每个房间可住ci个人,这 n 个人中有 t 对双胞胎,sum{ci}  = n 问你有多少种住房方法. 析:计数DP,dp[i][j] 表示前 i 个房间,还剩下 j ...

  6. UVaLive 6602 Counting Lattice Squares (找规律)

    题意:给定一个n*m的矩阵,问你里面有几面积为奇数的正方形. 析:首先能知道的是,大的矩阵是包括小的矩阵的,而且面积为奇数,我们只要考虑恰好在边界上的正方形即可,画几个看看就知道了,如果是3*3的有3 ...

  7. UVALive 6602 Counting Lattice Squares

    给定一个n*m的网格,求面积为奇数的正方形有多少个. 首先是n*m个面积为1的,然后剩下的要么是边长为奇数,要么被这样一个奇数边长所包围. 原因如下: 对于一个边长不平行于坐标抽的正方形,其边长一定是 ...

  8. UVALive 6527 Counting ones dfs(水

    题目链接:点击打开链接 #include <cstdio> #include <vector> using namespace std; typedef long long l ...

  9. Individual Contest #1 and Private Training #1

    第一次的增补赛,也是第一场个人排位赛,讲道理打的和屎一样,手速题卡了好久还WA了好多发,难题又切不出来,这种情况是最尴尬的吧! Individual Contest #1: Ploblem D: 题意 ...

随机推荐

  1. web基础

    1.认识webapp程序?     请求方式不同:基于事件触发------基于http协议下的http请求和http响应.点击百度一下-----发送了请求:不仅会携带问题,ip地址,主机号.请求是客户 ...

  2. 频率直方图(hist)

    频率直方图(frequency histogram)亦称频率分布直方图.统计学中表示频率分布的图形.在直角坐标系中,用横轴表示随机变量的取值,横轴上的每个小区间对应一个组的组距,作为小矩形的底边:纵轴 ...

  3. Wifite.py 修正版脚本代码

    Kali2.0系统自带的WiFite脚本代码中有几行错误,以下是修正后的代码: #!/usr/bin/python # -*- coding: utf-8 -*- """ ...

  4. iis7.5安装配置php环境

    前言 iis7.5是安装在win7.win8里的web服务器,win2003.win2000的web服务器使用的是iis6.0,由于win7.win8系统相比win2003.win2000有了改新革面 ...

  5. SQL for SQLite

    语法 verb + subject + predicate commannds(命令) SQL由命令组成,以分号为结束.命令有token组成,token由white space分隔,包括空格.tab. ...

  6. android中Post方式发送HTTP请求

    Post方式比Get方式要复杂一点,因为该方式需要将请求的参数放在http请求的正文中,所以需要构造请求体. 步骤: 1.构造URL URL url = new URL(PATH); 2.设置连接 H ...

  7. Android Builder模式在开发中的应用

    最近在学习图片加载框架Glide的时候,被他精简的写法震惊了.一句话,就可以搞定. Glide.with(mContext) .load(url) .centerCrop() .placeholder ...

  8. 【网络编程】TCP/IP、UDP、网络概…

    计算机刚刚发明出来的时候,两台计算机之间是无法通信的,为了使计算机之间能够进行数据的交流,制定了OSI(Open SystemInterconnection)开放系统互联模型,而TCP/IP(我们所使 ...

  9. JAVA IO 字节流与字符流

    文章出自:听云博客 题主将以三个章节的篇幅来讲解JAVA IO的内容 . 第一节JAVA IO包的框架体系和源码分析,第二节,序列化反序列化和IO的设计模块,第三节异步IO. 本文是第一节.     ...

  10. thinkphp5命名规范

    类的命名采用驼峰法,并且首字母大写.如:User.UserType[不需要加后缀.如IndexController是没必要的,应当直接为Index.接口或者抽象类也保持这个规范] 属性命名采用驼峰法, ...