这道题一开始本着很朴素的想法就是先输入两头的数据,然后对每组的数据范围下测试中间的数据即可,但是是超时的。原因也很明显,比如计算1~1000的数据之后,假如下一组数据是1~1001,本来只需要多测试下1001是否符合再加上前面的结果(1~1000)即可,而这种做法需要重复计算。

能够ac的处理方式是打表。就是分别计算1~n (n的范围是1~1000005) 中符合题设要求的数有多少,然后记录在data[n]中。在具体操作时,每步只增加1,然后增加的这个数字是否符合,然后将结果和前一位的结果相加即可。

代码:

 #include<stdio.h> 

 struct dataxy{
int x;//普通愤怒
int y;//特别愤怒
}a[]; int main(){
int i,j,k=;
//普通愤怒最早从125开始,特别愤怒最早从521开始
//打表,将125到1000000中的数据全部测试一遍,本次打表还有点动态规划的意味,因为
//计算0~x只需要测试x本身就好了,如果x本身是包含1/2/5的那就 a[x] = a[x-1] +1 ,否则就是a[x]=a[x-1]
//对于数512是同理
for(i=; i<; i++){
int c[]={};
if(i%==||i%/==||i%/==||i%/==||i%/==||i%/==)
c[]=;
if(i%==||i%/==||i%/==||i%/==||i%/==||i%/==)
c[]=;
if(i%==||i%/==||i%/==||i%/==||i%/==||i%/==)
c[]=;
if(c[]&&c[]&&c[]) a[i].x=a[i-].x+;
else a[i].x=a[i-].x; if(i%==||i%/==||i%/==||i%/==) a[i].y=a[i-].y+;
else a[i].y=a[i-].y;
} while(scanf("%d %d",&i,&j)!=EOF){
k++;
printf("Case %d:%d %d\n",k,a[j].x-a[i-].x,a[j].y-a[i-].y);
}
return ;
}

  看完这个题,让我想起了另一个能够打表处理的问题:找素数。  比如找出1~n(n的范围是1~1000005)之间的素数。题目和上面类似,也是圈定1~n之间的数符合某种规则,然后可能的提问方式是“输出某个区间内符合条件的值”,“在某个区间内符合条件的值有多少个”......处理的方式的第一步都是找到这些数。而打表的方法让OJ多个测试案例无需重复计算,而利用 [1,n-1]来计算[1,n]中符合的数的方法(在找素数中就是利用之前找到的素数来筛掉后面的合数),也减少了计算量。

这里贴一个找输出1~n之间素数的筛法的代码:

 #include <iostream>
#include <cstring>
using namespace std; //筛法求素数
#define N 100000
int valid[N],primers[N];
int count=; void GenPrimer(int n){ //参数n代表找出n以内的所有素数
int i,j,k;
for(i=;i<=n;i++){ //初始化,将valid[n]的值赋为1
valid[i]=true;
} for(i=;i*i<=n;i++){ //从2~sqrt(n) 进行筛选
if(valid[i]){ //从(valid[i] ) 素数i开始
for(j=i*i;j<=n;j+=i){ //从i^2开始,之前搜过的不再重复;将i*i、i*(i+1)、i*(i+2)、i*(i+3)...统统筛掉
valid[j]=false;
}
}
} for(i=;i<=n;i++){
if(valid[i]){
primers[count++]=i;
}
}
} int main(){
memset(primers,-,sizeof(primers));//初始化
GenPrimer(); //找出7000以内的所有素数。 for(int i=;i<count;i++){
cout<<primers[i]<<" ";
if((i+)%==) cout<<endl;
}
}

NYOJ 975的更多相关文章

  1. nyoj 975 关于521

    关于521 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Acm队的流年对数学的研究不是很透彻,但是固执的他还是想一头扎进去. 浏览网页的流年忽然看到了网上有人用玫 ...

  2. nyoj 975 Distinct Count

    Distinct Count 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 给一个长度为 n 的数列 {an} ,找出有多少个长度为 m 的区间,使区间中不含有重复的数 ...

  3. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  4. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  5. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  6. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  7. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  8. NYOJ题目769乘数密码

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsQAAAJYCAIAAADqk2fsAAAgAElEQVR4nO3dPVLrytbG8XcS5AyEWA

  9. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

随机推荐

  1. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  2. MVVM模式解析和在WPF中的实现(六) 用依赖注入的方式配置ViewModel并注册消息

    MVVM模式解析和在WPF中的实现(六) 用依赖注入的方式配置ViewModel并注册消息 系列目录: MVVM模式解析和在WPF中的实现(一)MVVM模式简介 MVVM模式解析和在WPF中的实现(二 ...

  3. Android raw to bmp

    Android raw 格式转 bmp 图像 raw 保存的为裸数据,转换时都需要把它转成RGBA 的方式来显示.其中: 8位RAW: 四位RGBA 来表示一位灰度; 24位RAW: 三位RGB相同, ...

  4. Android 5.0 到 Android 6.0 + 的深坑之一 之 .so 动态库的适配

    (原创:http://www.cnblogs.com/linguanh) 目录: 前序 一,问题描述 二,为何会如此"无情"? 三,目前存在该问题的知名SDK 四,解决方案,1 对 ...

  5. ZKWeb网页框架1.4正式发布

    本次更新的内容有 添加更快的批量操作函数 添加IDatabaseContext.FastBatchSave 添加IDatabaseContext.FastBatchDelete 注意这些函数不会触发注 ...

  6. 免费开源的DotNet任务调度组件Quartz.NET(.NET组件介绍之五)

    很多的软件项目中都会使用到定时任务.定时轮询数据库同步,定时邮件通知等功能..NET Framework具有“内置”定时器功能,通过System.Timers.Timer类.在使用Timer类需要面对 ...

  7. java.IO输入输出流:过滤流:buffer流和data流

    java.io使用了适配器模式装饰模式等设计模式来解决字符流的套接和输入输出问题. 字节流只能一次处理一个字节,为了更方便的操作数据,便加入了套接流. 问题引入:缓冲流为什么比普通的文件字节流效率高? ...

  8. git基本操作

    一.在Windows平台上安装Git,可以下载一个msysGit的安装包,点击exe即可安装运行.安装包下载地址:https://git-for-windows.github.io/备注:git命令行 ...

  9. 元素绝对居中终极办法兼容IE8

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. JS高级前端开发群加群说明及如何晋级

    JS高级前端开发群加群说明 一.文章背景: 二. 高级群: 三. 加入方式: 四. 说明:   一.文章背景: 去年年初建了几个群,在不经意间火了,一直排在“前端开发”关键字搜索结果第一名.当然取得这 ...