hihoCoder#1384 : Genius ACM
对于一个固定的区间$[l,r]$,显然只要将里面的数字从小到大排序后将最小的$m$个和最大的$m$个配对即可。
如果固定左端点,那么随着右端点的右移,$SPD$值单调不降,所以尽量把右端点往右移,贪心分割即可。
为了使得扫过的部分一定被分割下来,考虑倍增枚举区间长度,然后排序检验。
在得到区间长度属于某个区间$[2^k,2^{k+1})$后,可以将这里所有数字预先排好序,然后通过二分得到右端点的精确值,检验的时候只需要判断每个数字是否不超过$r$。
时间复杂度$O(n\log n)$。
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=500010,BUF=40000000;
char Buf[BUF],*buf=Buf;
int T,n,m,cnt,i,a[N],b[N];
ll limit,maxdiff;
inline bool cmp(int x,int y){return b[x]<b[y];}
inline void read(int&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
inline void read(ll&a){for(a=0;*buf<48;buf++);while(*buf>47)a=a*10+*buf++-48;}
inline void cal(int l,int r){
int i,j,n=0;
for(i=l;i<=r;i++)a[n++]=b[i];
maxdiff=0;
sort(a,a+n);
for(i=0,j=n-1;i<j&&i<m;i++,j--){
maxdiff+=1LL*(a[i]-a[j])*(a[i]-a[j]);
if(maxdiff>limit)break;
}
}
inline void init(int l,int r){
cnt=0;
for(int i=l;i<=r;i++)a[cnt++]=i;
sort(a,a+cnt,cmp);
}
inline void cal2(int r){
int i,j,k;
maxdiff=0;
for(i=0,j=cnt-1,k=m;k;i++,j--,k--){
while(i<j&&a[i]>r)i++;
while(i<j&&a[j]>r)j--;
if(i>=j)return;
maxdiff+=1LL*(b[a[i]]-b[a[j]])*(b[a[i]]-b[a[j]]);
if(maxdiff>limit)break;
}
}
inline int solve(){
int i,j,l,r,mid,t,now=0;
for(i=1;i<=n;i=t+1){
for(j=1;i+(1<<j)-1<=n;j++){
cal(i,i+(1<<j)-1);
if(maxdiff>limit)break;
}
t=i,l=i+(1<<(j-1))-1,r=i+(1<<j)-1;
if(r>n)r=n;
init(i,r);
while(l<=r){
cal2(mid=(l+r)>>1);
if(maxdiff<=limit)l=(t=mid)+1;else r=mid-1;
}
now++;
}
return now;
}
int main(){
fread(Buf,1,BUF,stdin);read(T);
while(T--){
read(n),read(m);
read(limit);
for(i=1;i<=n;i++)read(b[i]);
printf("%d\n",solve());
}
return 0;
}
hihoCoder#1384 : Genius ACM的更多相关文章
- [hihocoder #1384] Genius ACM 解题报告(倍增)
题目链接:http://hihocoder.com/problemset/problem/1384 题目大意: 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M ...
- hihocoder--1384 -- Genius ACM (倍增 归并)
题目链接 1384 -- Genius ACM 给定一个整数 m,对于任意一个整数集合 S,定义“校验值”如下:从集合 S 中取出 m 对数(即 2*M 个数,不能重复使用集合中的数,如果 S 中的整 ...
- CH0601 Genius ACM【倍增】【归并排序】
0601 Genius ACM 0x00「基本算法」例题 描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数 ...
- Contest Hunter 0601 Genius ACM
Genius ACM Advanced CPU Manufacturer (ACM) is one of the best CPU manufacturer in the world. Every d ...
- ACM-ICPC Beijing 2016 Genius ACM(倍增+二分)
描述 给定一个整数 M,对于任意一个整数集合 S,定义“校验值”如下: 从集合 S 中取出 M 对数(即 2∗M 个数,不能重复使用集合中的数,如果 S 中的整 数不够 M 对,则取到不能取为止),使 ...
- hihocoder 1388 &&2016 ACM/ICPC Asia Regional Beijing Online Periodic Signal
#1388 : Periodic Signal 时间限制:5000ms 单点时限:5000ms 内存限制:256MB 描述 Profess X is an expert in signal proce ...
- Genius ACM
题解: 发现匹配一定会选最大和最小匹配,确定左右端点之后nlogn排序后算 比较容易想到二分 最坏情况每次1个 $n^2*(logn)^2$ 没错暴力的最差复杂度是$n^2*logn$的 发现长度与次 ...
- hihocoder1384/CH0601 Genius ACM[贪心+倍增+归并排序]
提交地址. 关于lyd给的倍增方法,即从当前枚举向后的$2^k$长度($k$从$1$开始),如果可行就将$k$加一以扩大范围,不可行时将范围不断减半直至$0$. 举个例子,假设当下在1,目标答案是13 ...
- $CH0601\ Genius\ ACM$ 倍增优化DP
ACWing Description 给定一个长度为N的数列A以及一个整数T.我们要把A分成若干段,使得每一段的'校验值'都不超过N.求最少需要分成几段. Sol 首先是校验值的求法: 要使得'每对数 ...
随机推荐
- 第二课 less的学习以及移动端需要注意的问题
一.LESS的学习笔记: 1.less介绍:一种动态样式语言.less将css赋予了动态语言的特性,如变量,继承,运算,函数,less既可以在客户端上运行(支持IE6+,webkit,firefox) ...
- 两个viewport的故事(第一部分)
原文:http://www.quirksmode.org/mobile/viewports.html 在这个迷你系列的文章里边我将会解释viewport,以及许多重要元素的宽度是如何工作的,比如< ...
- MVC学习笔记---各种上下文context
0 前言 AspNet MVC中比较重要的上下文,有如下: 核心的上下文有HttpContext(请求上下文),ControllerContext(控制器上下文) 过滤器有关有五个的上下文Actio ...
- 如何知道SQL语句的性能和改进途径
用EXPLAIN吧... EXPLAIN , , , ) \G;
- HDU5489 Removed Interval(动态规划)
一个长度为n的序列,删除任意长度为l的连续子序列后,求剩下的序列的最长公共子序列. 先求出以第i个元素为开始的LIS的长度,再一次循环,对所要求的结果更新 #include<iostream&g ...
- .NET NLog 详解(五) - Condition Expression
Sample <!-- during normal execution only log Info messages --> <defaultFilter>level > ...
- 登录成功,拿到token
历尽波折,终于成功登录并拿到了token: - (LoginResultDto *)login:(NSString *)userName andPassword:(NSString *)passwor ...
- 难得的中文ASP.NET 5/MVC 6入门教程
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:由于ASP.NET 5还未正式发布,即使是官方文档都还不完善,更不要说系统的中文文档了 ...
- 监听报错 TNS-00525: Insufficient privilege for operation 11gR2 + 连接报错ORA-12537: TNS:connection closed
1.TNS-00525: Insufficient privilege for operation Started with pid= Listening on: (DESCRIPTION=(ADDR ...
- AIX下禁止crs随ha启动而启动
/etc/init.crs enable /etc/init.crs disable 查看目前crs是enable还是disable状态 状态记录在一个文本文件里 /etc/oracle/scls_ ...