Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1902    Accepted Submission(s): 540

Problem Description
Little
John is herding his father's cattles. As a lazy boy, he cannot tolerate
chasing the cattles all the time to avoid unnecessary omission.
Luckily, he notice that there were N trees in the meadow numbered from 1
to N, and calculated their cartesian coordinates (Xi, Yi). To herding
his cattles safely, the easiest way is to connect some of the trees
(with different numbers, of course) with fences, and the close region
they formed would be herding area. Little John wants the area of this
region to be as small as possible, and it could not be zero, of course.
 
Input
The first line contains the number of test cases T( T<=25 ). Following lines are the scenarios of each test case.
The
first line of each test case contains one integer N( 1<=N<=100 ).
The following N lines describe the coordinates of the trees. Each of
these lines will contain two float numbers Xi and Yi( -1000<=Xi,
Yi<=1000 ) representing the coordinates of the corresponding tree.
The coordinates of the trees will not coincide with each other.
 
Output
For
each test case, please output one number rounded to 2 digits after the
decimal point representing the area of the smallest region. Or output
"Impossible"(without quotations), if it do not exists such a region.
 
Sample Input
1
4
-1.00 0.00
0.00 -3.00
2.00 0.00
2.00 2.00
 
Sample Output
2.00
 
Source
 思路:在n个点里面找出3个点,使三角形的面积最小
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <cstring>
#include <cmath>
#include <iostream>
#define INF 1 << 25
#define eps 1e-8
using namespace std;
struct node{
double x,y;
}a[];
int n;
int check(node a,node b,node c)//向量判断是否3点在同一直线
{
node v1, v2;
v1.x = a.x - b.x;
v1.y = a.y - b.y;
v2.x = c.x - b.x;
v2.y = c.y - b.y;
if(fabs(v1.x * v2.y - v2.x * v1.y) < eps ) return ;
else return ;
}
double calc(node a,node b,node c)//求面积
{
double res = ;
res = fabs(a.x * b.y + b.x * c.y + c.x * a.y - b.x * a.y - c.x * b.y - a.x * c.y);
return res/2.0;
}
void solve()
{
scanf("%d",&n);
for(int i = ; i <=n ; ++i)
scanf("%lf%lf",&a[i].x,&a[i].y);
if(n == || n == ) { printf("Impossible\n"); return; }
double ans = INF;
for(int i = ; i <= n ;++i)//暴力枚举
for(int j = i + ; j <=n ; ++j)
for(int k = j + ; k <= n ; ++k)
if(check(a[i],a[j],a[k])){
double now = calc(a[i],a[j],a[k]);
if(now < ans) ans = now;
}
// cout << ans <<endl;
if(ans != INF)
printf("%.2f\n",ans);
else printf("Impossible\n");
}
int main()
{
ios::sync_with_stdio();
int t;
scanf("%d",&t);
while(t--)
solve();
return ;
}

Herding的更多相关文章

  1. hduoj 4706 Herding 2013 ACM/ICPC Asia Regional Online —— Warmup

    hduoj 4706 Children's Day 2013 ACM/ICPC Asia Regional Online —— Warmup Herding Time Limit: 2000/1000 ...

  2. HDU 4709:Herding

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  3. HDU Herding

    F - Herding Time Limit:1000MS       Memory Limit:32768KB      64bit IO Format:%I64d & %I64u Subm ...

  4. Herding(hdu4709)三点运用行列式求面积

    Herding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. HDU 4709 Herding (枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  6. HDUOJ---(4708)Herding

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  8. hdu - 4709 - Herding

    题意:给出N个点的坐标,从中取些点来组成一个多边形,求这个多边形的最小面积,组不成多边形的输出"Impossible"(测试组数 T <= 25, 1 <= N < ...

  9. hdu 4709 Herding hdu 2013 热身赛

    题意:给出笛卡尔坐标系上 n 个点,n不大于100,求出这些点中能围出的最小面积. 可以肯定的是三个点围成的面积是最小的,然后就暴力枚举,计算任意三点围成的面积.刚开始是求出三边的长,然后求面积,运算 ...

随机推荐

  1. js 如何在浏览器中获取当前位置的经纬度

    这个有一定的误差哈,具体的误差是多少,有兴趣的朋友可以去测试下 直接上代码 index.html页面代码: <html> <head lang="en"> ...

  2. php单例模式的研究

    几个关键点: 1,对象P应该可以被系统中的任何对象使用 2,对象P不应该被存储在会被覆写的全局变量总 3,系统中不应该超过一个P对象,也就是说,Y对象可以设置P对象的一个属性,而Z对象不需要通过其他对 ...

  3. iOS 多线程及其他补充

      NSOperation NSOperation是个抽象类,并不具备封装操作的能力,必须使用它的子类 NSInvocationOperation 如果直接执行NSInvocationOperatio ...

  4. -bash: pod: command not found

    OS X 系统没升级之前用的 cocoapods 一点儿问题都没有,但是升级成版本10.11.4 OS X EI Capitan之后,在终端除了cd 指令可以用之外,其他任何指令输入都是提示-bash ...

  5. error C2664: 'TextOutW' : cannot convert parameter 4 from const char [5]' to LPCTSTR

    转自:http://blog.sina.com.cn/s/blog_4aa4593d0100odra.html 问题的原因是字符串ANSI和Unicode编码的区别, VC6与VS2003等默认使用A ...

  6. 安装jdk源码

    step1:打开选择Window->Preference step2:选择Java->Installed JREs step3:选中你所安装的jre,点击Edit,进入Edit JRE,如 ...

  7. UbuntuLinux安装Mysql

    1.安装Mysql5.7 方法:手动安装5.7 One:     $ wget http://dev.mysql.com/get/mysql-apt-config_0.6.0-1_all.deb 下载 ...

  8. 数据存储-CoreData总结

    CoreData /*英译  Entity:实体 Attributes:属性 binary:二进制 persistent:持续化 coordinator:协调者 meging:合并 configura ...

  9. Java bean validation 规范与参考实现

    1.Apache Bval 依赖包:validation-api-1.1.0.Final.jar org.apache.bval.bundle-1.1.1.jar bval-core-1.1.1.ja ...

  10. NYOJ题目98成绩转换

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsQAAAJhCAIAAADJ5jGJAAAgAElEQVR4nO3dq3LkSPg36O8mzH0hxn ...