[SDOI2019]热闹又尴尬的聚会

链接

luogu

loj

思路

第一问贪心?的从小到大删除入度最小的点,入度是动态的,打个标记。

当然不是最大独立集。

第二问第一问的顺序选独立集,不行就不要。选出来的一定是满足不等式的。

每次最多删除p+1个,独立集个数是\(\lceil \frac{n}{p+1} \rceil >= \lfloor \frac{n}{p+1} \rfloor\)

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5 + 7;
int read() {
int x = 0, f = 1; char s = getchar();
for (;s > '9' || s < '0'; s = getchar()) if (s == '-') f = -1;
for (;s >= '0' && s <= '9'; s = getchar()) x = x * 10 + s - '0';
return x * f;
}
int n, m, ru[N];
vector<int> G[N];
vector<pair<int, int> > nb;
int ans1[N], vis[N];
struct edge{
int val, id;
edge(int x = 0, int y = 0) {val = x, id = y;}
};
bool operator < (edge a, edge b) {return a.val > b.val;}
priority_queue<edge> q;
void solve() {
for (int i = 1; i <= n; ++i) q.push(edge(ru[i], i));
int mx = 0;
while (!q.empty()) {
edge now = q.top();
q.pop();
if (now.val != ru[now.id]) continue;
// printf("ru[%d]=%d\n",now.id,ru[now.id]);
mx = max(mx, ru[now.id]);
ans1[now.id] = mx;
vis[now.id] = 1;
for (auto v : G[now.id]) {
if (vis[v]) vis[now.id] = 0;
if (!ans1[v]) q.push(edge(--ru[v],v));
}
} int js = 0;
for (int i = 1; i <= n; ++i) if (ans1[i] == mx) ++js;
printf("%d ", js);
for (int i = 1; i <= n; ++i) if (ans1[i] == mx) printf("%d ", i);
printf("\n");
js = 0;
for (int i = 1; i <= n; ++i) if (vis[i]) ++js;
printf("%d ", js);
for (int i = 1; i <= n; ++i) if (vis[i]) printf("%d ", i);
printf("\n");
}
int main() {
// freopen("a.in","r",stdin);
int T = read();
while (T--) {
n = read(), m = read();
for (int i = 1; i <= n; ++i) {
G[i].clear();
vis[i] = ru[i] = ans1[i] = 0;
}
for (int i = 1; i <= m; ++i) {
int u = read(), v = read();
G[u].push_back(v), G[v].push_back(u);
ru[u]++, ru[v]++;
}
solve();
}
return 0;
}

[SDOI2019]热闹又尴尬的聚会 构造,贪心的更多相关文章

  1. SDOI2019热闹又尴尬的聚会

    P5361 [SDOI2019]热闹又尴尬的聚会 出题人用脚造数据系列 只要将\(p\)最大的只求出来,\(q\)直接随便rand就能过 真的是 我们说说怎么求最大的\(p\),这个玩意具有很明显的单 ...

  2. [洛谷P5361][SDOI2019]热闹又尴尬的聚会:构造题

    分析 构造方法 (截图自UOJ群) 可以使用std::set维护这个过程,不过据说可以做到\(O(n+m)\).. 正确性证明 题目中的要求等价于\((p+1)(q+1) > n\) 设每次找出 ...

  3. [SDOI2019]热闹又尴尬的聚会(图论+set+构造)

    据说原数据可以让复杂度不满的暴力O(Tn^2)过掉……O(Tn^2)方法类似于codeforces一场div2的E题 有一种比较好的方法:每次找出原图G中度最小的点加入q,然后将相邻的点加入新图G'. ...

  4. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  5. [SDOI2019] 热闹又尴尬的聚会

    热闹度\(p\)子图中最小的度数,尴尬度\(q\)独立集大小,之间的约束 \[ \begin{aligned} \lfloor n/(p+1)\rfloor\le q &\rightarrow ...

  6. vijos2054 SDOI2019 热闹的聚会与尴尬的聚会

    题目链接 思路 首先观察题目最后的式子\(\lfloor \frac{n}{p + 1} \rfloor \le q\) 并且\(\lfloor \frac{n}{q+1} \rfloor \le p ...

  7. [luogu5361]热闹的聚会与尴尬的聚会

    由于两者是独立的,我们希望两者的$p$和$q$都最大 考虑最大的$p$,先全部邀请,此时要增大$p$显然必须要删去当前度数最小的点,不断删除之后将每一次度数最小值对答案取max即可 对于$q$也即最大 ...

  8. LA 6979 Known Notation 构造+贪心 铜牌题

    题意:给出一个字符串,有两种操作: 1.插入一个数字  2.交换两个字符   问最少多少步可以把该字符串变为一个后缀表达式(操作符只有*) #include <cstdio> #inclu ...

  9. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

随机推荐

  1. 比较器Comparable和Comparator

    在java中要实现自定义类的比较,提供了以下两个接口: Comparable(内部排序) int compareTo(Object obj);返回值为int,默认升序排序 Comparator(外部排 ...

  2. Django---Django中使用COOKIE和SESSION

    Django---Django中使用COOKIE和SESSION 一丶Cookie cookie的由来 # HTTP协议是无状态的. # 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请 ...

  3. 【JVM】CMS垃圾回收器

    一.简介 Concurrent Mark Sweep,是一种以获取最短回收停顿时间为目标的收集器,尤其重视服务的响应速度. CMS是老年代垃圾回收器,基于标记-清除算法实现.新生代默认使用ParNew ...

  4. iOS - 适配 iOS 13 之工兵连扫雷

    iOS 13 支持适配的机型 目前最新 iPhone 11.iPhone 11 Pro和iPhone 11 Pro Max iPhone X.iPhone XR.iPhone XS.iPhone XS ...

  5. 前端工程师拿到全新的 Mac 需要做哪些准备

    最近苹果退出了新款 Mac,用了3年15款Pro之后,终于盼到18款的降价,于是含泪更新换代 但是每次换电脑,重装环境的好多东西记不清,于是记个笔记 一.终端 安装 zsh sh -c "$ ...

  6. 智能制造进入下半场?APS如何进行优化

    按照现在算法和计算机处理能力的发展,现在资源优化的方向已经逐渐摒弃,而是在更系统的“有限产能计划的”框架内一并解决产能和物料的问题. 我们所看到的新近涌现出来的很多APS系统.但碍于算法的复杂程度,在 ...

  7. 【python】一篇文章里的词频统计

    一.环境 1.python3.6 2.windows系统 3.安装第三方模块 pip install wordcloud #词云展示库 pip install jieba #结巴分词 pip inst ...

  8. 简述-selenium对web实现自动化测试

    首先,我是基于python进行对selenium操作和使用的,主要分为selenium的实现原理和selenium的操作这两大部分的简单分享(由于本人水平有限,仅做基础的概述和总结): 一.selen ...

  9. Linux系统密码复杂度安全配置

    密码有效期控制 在文件/etc/login.defs中进行设置,如下参数 PASS_MAX_DAYS 180 #密码最长过期天数 PASS_MIN_DAYS 30 #密码最小过期天数 PASS_MIN ...

  10. mysql连接查询:3个数据表操作研究

    首先,新建数据表aaa.bbb以及他们相关联的数据表avb:字段名如下图 填充点数据,如下: 上面设计表的时候,故意在两个表中有相同字段con,如果不做处理的话,在php程序中,看看什么情况?得到的结 ...