51: Luogu 2485 模板
$des$
1、给定y、z、p,计算y^z mod p 的值;
2、给定y、z、p,计算满足xy ≡z(mod p)的最小非负整数x;
3、给定y、z、p,计算满足y^x ≡z(mod p)的最小非负整数x。
$sol$
模板+模板+模板
#include <bits/stdc++.h>
using namespace std;
#define LL long long
LL n, k;
LL Ksm(LL a, LL b, LL p) {
LL ret = ;
while(b) {
if(b & ) ret = ret * a % p;
a = a * a % p;
b >>= ;
}
return ret;
}
void Work1() {
for(int i = ; i <= n; i ++) {
LL y, z, p; cin >> y >> z >> p;
cout << Ksm(y, z, p) << "\n";
}
}
LL Exgcd(LL a, LL b, LL &x, LL &y) {
if(b == ) {
x = , y = ; return a;
}
LL g = Exgcd(b, a % b, x, y);
LL tmpx = x; x = y; y = tmpx - a / b * y;
return g;
}
void Work2() {
for(int i = ; i <= n; i ++) {
LL y, z, p; cin >> y >> z >> p;
LL x, k;
LL gcd = Exgcd(y, p, x, k);
if(z % gcd) {
puts("Orz, I cannot find x!"); continue;
}
LL r = z / gcd, d = p / gcd;
x *= r;
x = ((x % d) + d) % d;
cout << x << "\n";
}
}
map <LL, int> Map;
void Work3() {
for(int i = ; i <= n; i ++) {
LL y, z, p; cin >> y >> z >> p;
// y ^ x = z (mod p)
LL m = sqrt(p);
if(m * m != p) m ++;
// y ^ {im} = z * y ^ j (mod p)
if(!(y % p)) {
puts("Orz, I cannot find x!"); continue;
}
Map.clear();
Map[z % p] = ;
LL ans = z % p;
for(int i = ; i <= m; i ++) {
ans = (ans * y) % p;
Map[ans] = i;
}
LL f = Ksm(y, m, p);
bool flag = ;
ans = ;
for(int i = ; i <= m; i ++) {
ans = ans * f % p;
if(Map[ans]) {
LL O = i * m - Map[ans];
O = (O % p + p) % p;
cout << O << "\n";
flag = ;
break;
}
}
if(flag) {
puts("Orz, I cannot find x!");
}
}
}
int main() {
cin >> n >> k;
k == ? Work1() : (k == ? Work2() : Work3());
return ;
}
51: Luogu 2485 模板的更多相关文章
- [luogu P3384] [模板]树链剖分
[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...
- Luogu P2742 模板-二维凸包
Luogu P2742 模板-二维凸包 之前写的实在是太蠢了.于是重新写了一个. 用 \(Graham\) 算法求凸包. 注意两个向量 \(a\times b>0\) 的意义是 \(b\) 在 ...
- luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)
luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include< ...
- Luogu [P3367] 模板 并查集
[模板]并查集 题目详见:[[P3367][模板]并查集] (https://www.luogu.org/problemnew/show/P3367) 这是一道裸的并查集题目(要不然叫模板呢) 废话不 ...
- Luogu P3381 (模板题) 最小费用最大流
<题目链接> 题目大意: 给定一张图,给定条边的容量和单位流量费用,并且给定源点和汇点.问你从源点到汇点的最带流和在流量最大的情况下的最小费用. 解题分析: 最小费用最大流果题. 下面的是 ...
- [Luogu] 【模板】点分治1
// 模板题#include <bits/stdc++.h> ; , head[N], dis[N]; ]; int size[N], maxson[N], Root; bool vis[ ...
- luogu P5410 模板 扩展 KMP Z函数 模板
LINK:P5410 模板 扩展 KMP Z 函数 画了10min学习了一下. 不算很难 思想就是利用前面的最长匹配来更新后面的东西. 复杂度是线性的 如果不要求线性可能直接上SA更舒服一点? 不管了 ...
- luogu P4887 模板 莫队二次离线 莫队 离线
LINK:模板莫队二次离线 很早以前学的知识点 不过 很久了忘了. 考虑暴力 :每次莫队更新的时候 尝试更新一个点到一个区间的答案 可以枚举二进制下位数为k的数字 看一下区间内的这种数字有多少个. 不 ...
- 51 EEPROM操作模板
各个型号容量及扇区请查datasheet #include <reg52.h> #include "intrins.h" typedef unsigned char b ...
随机推荐
- 【mysql】 mybatis实现 主从表 left join 1:n 一对多 分页查询 主表从表都有查询条件 【mybatis】count 统计+JSON查询
mybatis实现 主从表 left join 1:n 一对多 分页查询 主表从表都有查询条件+count 需求: ======================================= ...
- java中什么是接口
一.什么是接口 接口就是一个规范,类似于硬件上面的接口,在电脑主板上的PCI插槽的规范就类似于Java接口,只要是遵循PCI接口的卡,不过是什么牌子的都可以插入到PCI插槽中.所以接口就是一个规范.接 ...
- XML Schema 基本结构
<?xml version='1.0'?> <Schema name="cangchuSchema" metamodelVersion="4.0&quo ...
- Redis 获取和设置密码
1.config get reuqirepass //获取当前密码 2.config set requirepass "password"//设置当前密码,双引号里面为密码
- Angular复习笔记6-依赖注入
Angular复习笔记6-依赖注入 依赖注入(DependencyInjection)是Angular实现重要功能的一种设计模式.一个大型应用的开发通常会涉及很多组件和服务,这些组件和服务之间有着错综 ...
- HeRaNO's NOIP CSP Round Day 2 T3 ginkgo
睡醒后我第一眼:这不主席树裸题吗? 先统计dfs序,把树上问题转化为区间问题 区间大于等于某个数的个数...主席树模板? #include<bits/stdc++.h> #define r ...
- HeRaNO's NOIP CSP Round Day 2 T2 PESTC
对于我这种菜鸡来说还是挺有迷惑性的. 在考场发现答案问的是跟最值有关的数量,想到二分,结果果然具有单调性,考虑二份答案+验证 其实什么反转什么的,可以不用去管他,对于长度小于二分答案mid的道路,不去 ...
- 巧记 In/hasOwnProperty/for…in/for…of/forEach区别
写在前面 上面提到的这些东西,反复的记忆,反复的忘记.现分享一种巧记方法,有需要,请参考,希望你也过目不忘. 仅提供巧记思路.仅提供巧记思路.仅提供巧记思路. 1. in 用于判断属性是否在对象上(包 ...
- Mac安装Java的JDK并进行环境配置
一.下载JDK 1.直接进入oracle官网下载页: https://www.oracle.com/technetwork/java/javase/downloads/index.html 2.选择版 ...
- Buffer、核心API、npm
Buffer基本操作 Buffer对象是Node处理二进制数据的一个接口.它是Node原生提供的全局对象,可以直接使用,不需要require(‘buffer’). 实例化 Buffer.from( ...