CF1175E Minimal Segment Cover
题意
给出n条线段。m次询问,每次询问给出一个区间\([l,r]\)问最少需要多少条线段才能覆盖区间\([l,r]\)。
所有坐标\(\le 5\times 10^5\)。\(n,m\le 2\times 10^ 5\)
思路
其实是比较经典的线段覆盖问题。
\(f[i][j]\)表示从i开始走\(2^j\)条线段最远到达的位置。
然后对于每次询问都走一遍即可。
代码
/*
* @Author: wxyww
* @Date: 2019-06-06 10:55:48
* @Last Modified time: 2019-06-06 14:54:02
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 1000000 + 100,logN = 23;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int f[N][logN + 1];
int query(int l,int r) {
ll ans = 0;
for(int i = logN - 1;i >= 0;--i) {
if(f[l][i] < r) {
l = f[l][i];
ans += (1 << i);
}
}
l = f[l][0];ans++;
if(l < r) return -1;
return ans;
}
int main() {
int n = read(),m = read();
int mx = 0;
for(int i = 1;i <= n;++i) {
int l = read() + 1,r = read() + 1;
f[l][0] = max(f[l][0],r);
mx = max(mx,r);
}
for(int i = 1;i <= mx;++i) f[i][0] = max(f[i][0],max(i,f[i - 1][0]));
for(int j = 1;j < logN;++j)
for(int i = 1;i <= mx;++i)
f[i][j] = f[f[i][j - 1]][j - 1];
while(m--) {
int l = read() + 1,r = read() + 1;
printf("%d\n",query(l,r));
}
return 0;
}
CF1175E Minimal Segment Cover的更多相关文章
- CF1175E Minimal Segment Cover 题解
题意:给出\(n\)个形如\([l,r]\)的线段.\(m\)次询问,每次询问区间\([x,y]\),问至少选出几条线段,使得区间\([x,y]\)的任何一个部位都被至少一条线段覆盖. 首先有一个显然 ...
- Codeforces 1175E Minimal Segment Cover
题意: 有\(n\)条线段,区间为\([l_i, r_i]\),每次询问\([x_i, y_i]\),问要被覆盖最少要用多少条线段. 思路: \(f[i][j]\)表示以\(i\)为左端点,用了\(2 ...
- CodeForces - 1175E Minimal Segment Cover (倍增优化dp)
题意:给你n条线段[l,r]以及m组询问,每组询问给出一组[l,r],问至少需要取多少个线段可以覆盖[l,r]区间中所有的点. 如果贪心地做的话,可以求出“从每个左端点l出发选一条线段可以到达的最右端 ...
- codeforces1175E Minimal Segment Cover 倍增
题目传送门 题意:给出n条平行于x轴的线段,q次询问,每次询问一个区间最少要几条线段来覆盖,若不能覆盖则输出-1. 思路:先考虑贪心,必定是先找到,所有左端点小于等于$x$的线段的右端点最大在哪里,然 ...
- Codeforces Edu Round 66 A-E
A. From Hero to Zero 通过取余快速运行第一步即可.由于\(a \% b (a >= b) <= \frac{a}{2}\).所以总复杂度不超过\(O(log_2n)\) ...
- uva.10020 Minimal coverage(贪心)
10020 Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose t ...
- 【区间覆盖问题】uva 10020 - Minimal coverage
可以说是区间覆盖问题的例题... Note: 区间包含+排序扫描: 要求覆盖区间[s, t]; 1.把各区间按照Left从小到大排序,如果区间1的起点大于s,则无解(因为其他区间的左起点更大):否则选 ...
- UVa 10020 - Minimal coverage(区间覆盖并贪心)
Given several segments of line (int the X axis) with coordinates [Li, Ri]. You are to choose the min ...
- UVA 10020 Minimal coverage(贪心 + 区间覆盖问题)
Minimal coverage The Problem Given several segments of line (int the X axis) with coordinates [Li, ...
随机推荐
- php json_decode无法处理\解决方法
php json_decode无法处理\解决方法 <pre>$aa=urlencode('eee\ee');$dfda='[{"company":"测试&qu ...
- Uboot启动流程分析(三)
1.前言 在前面的文章Uboot启动流程分析(二)中,链接如下: https://www.cnblogs.com/Cqlismy/p/12002764.html 已经对_main函数的整个大体调用流程 ...
- c#之添加window服务(定时任务)
本文讲述使用window服务创建定时任务 1.如图,新建项目,windows桌面->windows服务 2.如图,右键,添加安装程序 3.在下图安装程序 serviceInstaller1 上右 ...
- Winform中对xml文件进行保存时空白节点自动换行问题的解决
场景 Winform中自定义xml配置文件后对节点进行读取与写入: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10053213 ...
- css样式篇
list-style list-style-type 设置列表项标记的类型 list-style-position 可设置outside(列表项目标记放置在文本以内,且环绕文本根据标记对齐) ...
- placeholder和assign速度对比
在CPU上,使用variable和placeholder效果差不多 在GPU上,使用variable要比每次都传placeholder快得多3:2 使用GPU的瓶颈主要在于GPU和内存之间的复制操作 ...
- React的jsx语法,详细介绍和使用方法!
jsx语法 一种混合使用html及javascript语法的代码 在js中 遇到<xx>即开始html语法 遇到</xx>则结束html语法 恢复成js语法 例如: let D ...
- 微信小程序使用websocket通讯的demo,含前后端代码,亲测可用
目录 0.概述websocket 1.app.js写法 2.后台写法 0.概述websocket (1) 个人总结:后台设置了websocket地址,服务器开启后等待有人去连接它. 一个客户端一打开就 ...
- 团队作业第3周——需求改进&系统设计(crtl冲锋队)
2.需求&原型改进: 1.问题:游戏中我方飞机和敌方飞机是怎么控制的? 改进: 在游戏中,我控制我方飞机,按下方向键飞机便向按下的方向移动,按下Z键,我方飞机发射子弹. 敌方飞机面向随机的方向 ...
- SqlServer数据库之游标
游标的简单实现,直接上SQL语句 --循环对每一个代理统计业绩 DECLARE cursor_name CURSOR FOR --定义游标 需要进行游标的数据表 SELECT * FROM #Agen ...