Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

解法1:递归。按照前面I, II的思路用递归来解,会TLE,比如:OJ一个test case为[4,1,2] 32,结果是39882198,用递归需要好几秒时间。

解法2:动态规划DP来解。这道题类似于322. Coin Change ,建一个一维数组dp,dp[i]表示目标数target为i时解的个数,从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。比如[1,2,3] 4,当计算dp[3]时,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,x为dp[1],3同样可以拆为3+x,x为dp[0],把所有情况加起来就是组成3的所有解。

Java: Recursive

public int combinationSum4(int[] nums, int target) {
if (target == 0) {
return 1;
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += combinationSum4(nums, target - nums[i]);
}
}
return res;
}

Java:

private int[] dp;

public int combinationSum4(int[] nums, int target) {
dp = new int[target + 1];
Arrays.fill(dp, -1);
dp[0] = 1;
return helper(nums, target);
} private int helper(int[] nums, int target) {
if (dp[target] != -1) {
return dp[target];
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += helper(nums, target - nums[i]);
}
}
dp[target] = res;
return res;
}

Java:  

public int combinationSum4(int[] nums, int target) {
int[] comb = new int[target + 1];
comb[0] = 1;
for (int i = 1; i < comb.length; i++) {
for (int j = 0; j < nums.length; j++) {
if (i - nums[j] >= 0) {
comb[i] += comb[i - nums[j]];
}
}
}
return comb[target];
}

Java:

class Solution {
public int combinationSum4(int[] nums, int target) {
if(nums==null || nums.length==0)
return 0; int[] dp = new int[target+1]; dp[0]=1; for(int i=0; i<=target; i++){
for(int num: nums){
if(i+num<=target){
dp[i+num]+=dp[i];
}
}
} return dp[target];
}

Python:

class Solution(object):
def combinationSum4(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
dp = [0] * (target+1)
dp[0] = 1
nums.sort() for i in xrange(1, target+1):
for j in xrange(len(nums)):
if nums[j] <= i:
dp[i] += dp[i - nums[j]]
else:
break return dp[target]  

Python:

class Solution(object):
def combinationSum4(self, nums, target):
nums, combs = sorted(nums), [1] + [0] * (target)
for i in range(target + 1):
for num in nums:
if num > i: break
if num == i: combs[i] += 1
if num < i: combs[i] += combs[i - num]
return combs[target]  

C++:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
sort(nums.begin(), nums.end()); for (int i = 1; i <= target; ++i) {
for (int j = 0; j < nums.size() && nums[j] <= i; ++j) {
dp[i] += dp[i - nums[j]];
}
} return dp[target];
}
};  

类似题目:

[LeetCode] 322. Coin Change 硬币找零

[LeetCode] 39. Combination Sum 组合之和

[LeetCode] 40. Combination Sum II 组合之和 II

[LeetCode] 216. Combination Sum III 组合之和 III

All LeetCode Questions List 题目汇总

[LeetCode] 377. Combination Sum IV 组合之和 IV的更多相关文章

  1. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  2. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  3. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  4. [LeetCode] 40. Combination Sum II 组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  5. [LeetCode] 377. Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  6. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  7. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  8. LeetCode OJ:Combination Sum II (组合之和 II)

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  9. 377 Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

随机推荐

  1. lca:异象石(set+dfs序)

    题目:https://loj.ac/problem/10132 #include<bits/stdc++.h> using namespace std; ,N,k=,head[]; str ...

  2. 开发Electron可能用到的工具

    nodejs:搭载谷歌v8内核的高性能的node环境npm:包管理工具webpack:模块打包器jQuery:js必备库Bootstrap:css必备库react:用于构建用户界面的库vue:构建数据 ...

  3. shortcuts for contructor 创建对象捷径

  4. Convert 输入字符串的格式不正确

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...

  5. Task 使用方法

    Task的使用方法 1. 调用无参数.无返回值方法 private void button1_Click(object sender, EventArgs e) { Task task = new T ...

  6. eclipse 配置python环境 json 插件

    windows->install new software add 配置python 环境: name:pydev(可随意写) url:http://pydev.org/updates/ (如果 ...

  7. S1_搭建分布式OpenStack集群_03 Mysql、MQ、Memcached、ETCD安装配置

    一.安装mysql(contorller)controller ~]# yum -y install mariadb mariadb-server python2-PyMySQL 配置my.cnf文件 ...

  8. 使用nginx 正向代理暴露k8s service && pod ip 外部直接访问

    有时在我们的实际开发中我们希望直接访问k8s service 暴露的服务,以及pod的ip 解决方法,实际上很多 nodeport ingress port-forword 实际上我们还有一种方法:正 ...

  9. hasura skor 一个pg 的event trigger 扩展

    hasura skor 是一个hasura 团队早期的event triggerpg 扩展,新的推荐使用graphql engine 参考架构 缺点 只有在skor 运行的时候,数据才可以被捕捉处理 ...

  10. IIS 站点配置文件

    IIS 站点配置文件  C:/Windows/System32/inetsrv/config/applicationHost.config 配置文件示例: <system.application ...