[LeetCode] 377. Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
解法1:递归。按照前面I, II的思路用递归来解,会TLE,比如:OJ一个test case为[4,1,2] 32,结果是39882198,用递归需要好几秒时间。
解法2:动态规划DP来解。这道题类似于322. Coin Change ,建一个一维数组dp,dp[i]表示目标数target为i时解的个数,从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。比如[1,2,3] 4,当计算dp[3]时,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,x为dp[1],3同样可以拆为3+x,x为dp[0],把所有情况加起来就是组成3的所有解。
Java: Recursive
public int combinationSum4(int[] nums, int target) {
if (target == 0) {
return 1;
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += combinationSum4(nums, target - nums[i]);
}
}
return res;
}
Java:
private int[] dp;
public int combinationSum4(int[] nums, int target) {
dp = new int[target + 1];
Arrays.fill(dp, -1);
dp[0] = 1;
return helper(nums, target);
}
private int helper(int[] nums, int target) {
if (dp[target] != -1) {
return dp[target];
}
int res = 0;
for (int i = 0; i < nums.length; i++) {
if (target >= nums[i]) {
res += helper(nums, target - nums[i]);
}
}
dp[target] = res;
return res;
}
Java:
public int combinationSum4(int[] nums, int target) {
int[] comb = new int[target + 1];
comb[0] = 1;
for (int i = 1; i < comb.length; i++) {
for (int j = 0; j < nums.length; j++) {
if (i - nums[j] >= 0) {
comb[i] += comb[i - nums[j]];
}
}
}
return comb[target];
}
Java:
class Solution {
public int combinationSum4(int[] nums, int target) {
if(nums==null || nums.length==0)
return 0;
int[] dp = new int[target+1];
dp[0]=1;
for(int i=0; i<=target; i++){
for(int num: nums){
if(i+num<=target){
dp[i+num]+=dp[i];
}
}
}
return dp[target];
}
}
Python:
class Solution(object):
def combinationSum4(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
dp = [0] * (target+1)
dp[0] = 1
nums.sort() for i in xrange(1, target+1):
for j in xrange(len(nums)):
if nums[j] <= i:
dp[i] += dp[i - nums[j]]
else:
break return dp[target]
Python:
class Solution(object):
def combinationSum4(self, nums, target):
nums, combs = sorted(nums), [1] + [0] * (target)
for i in range(target + 1):
for num in nums:
if num > i: break
if num == i: combs[i] += 1
if num < i: combs[i] += combs[i - num]
return combs[target]
C++:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
sort(nums.begin(), nums.end());
for (int i = 1; i <= target; ++i) {
for (int j = 0; j < nums.size() && nums[j] <= i; ++j) {
dp[i] += dp[i - nums[j]];
}
}
return dp[target];
}
};
类似题目:
[LeetCode] 322. Coin Change 硬币找零
[LeetCode] 39. Combination Sum 组合之和
[LeetCode] 40. Combination Sum II 组合之和 II
[LeetCode] 216. Combination Sum III 组合之和 III
All LeetCode Questions List 题目汇总
[LeetCode] 377. Combination Sum IV 组合之和 IV的更多相关文章
- [LeetCode] 216. Combination Sum III 组合之和 III
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [leetcode]40. Combination Sum II组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和 II
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 40. Combination Sum II 组合之和之二
Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...
- [LeetCode] 377. Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- [LeetCode] Combination Sum III 组合之和之三
Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...
- [LeetCode] Combination Sum II 组合之和之二
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...
- LeetCode OJ:Combination Sum II (组合之和 II)
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...
- 377 Combination Sum IV 组合之和 IV
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
随机推荐
- 项目Alpha冲刺(团队)-第十天冲刺
格式描述 课程名称:软件工程1916|W(福州大学) 作业要求:项目Alpha冲刺(团队) 团队名称:为了交项目干杯 作业目标:描述第十天冲刺的项目进展.问题困难.心得体会 队员姓名与学号 队员学号 ...
- Alpha冲刺(7/10)——2019.4.30
所属课程 软件工程1916|W(福州大学) 作业要求 Alpha冲刺(7/10)--2019.4.30 团队名称 待就业六人组 1.团队信息 团队名称:待就业六人组 团队描述:同舟共济扬帆起,乘风破浪 ...
- 线程池的使用(ThreadPoolExecutor详解)
为什么要使用线程池? 线程是一个操作系统概念.操作系统负责这个线程的创建.挂起.运行.阻塞和终结操作.而操作系统创建线程.切换线程状态.终结线程都要进行CPU调度——这是一个耗费时间和系统资源的事情. ...
- 微信小程序——音频播放器
先来个效果图韵下味: 需求: 音频的播放,暂停,中间按钮状态的变化,播放时实时更新播放进度: 前进15s,后退15s: 进度条拖动. 一开始想着这3个功能应该挺简单的.不就是播放,暂停,前进,后退么~ ...
- Goexit
package main import ( "fmt" "runtime" ) func test() { defer fmt.Println("cc ...
- Web 项目的文件/文件夹上传下载
我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用. 这次项目的需求: 支持大文件的上传和续传,要求续传支持所有浏览器,包括ie6,ie7,i ...
- Redis的移库操作
1.Redis默认有16个数据库,一般情况下使用0库: 2.移库操作: 将mysets移到一号库: 通过Redis查看器查看: 通过命令查看:
- Xamarin安装及调试
Xamarin介绍 Xamarin是一个跨平台的开发框架(工具集),创始于2011年,旨在使移动开发变得难以置信地迅捷和简单,它是跨平台的,它允许开发人员有效创建可跨 iOS.Android.Wind ...
- 16-ESP8266 SDK开发基础入门篇--TCP 服务器 非RTOS运行版,串口透传(串口回调函数处理版)
https://www.cnblogs.com/yangfengwu/p/11105466.html 其实官方给的RTOS的版本就是在原先非RTOS版本上增加的 https://www.cnblogs ...
- 79: cf 444E 并查集+思维
$des$ 题面 $sol$ 把边从小到大排序,枚举每条边作为答案,然后把两个点合并,判断每条边是否可以作为答案时,$cnt_i$ 表示节点 $i$ 已经合并的 $x$ 之和$size_i$ 表示已经 ...