欲直接下载代码文件,关注我们的公众号哦!查看历史消息即可!

前言:让我的电脑认识我

我的电脑只有认识我,才配称之为我的电脑!

今天,我们用Python实现高大上的人脸识别技术

Python里,简单的人脸识别有很多种方法可以实现,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的。这里介绍的是准确性比较高的一种。

01 首先

梳理一下实现人脸识别需要进行的步骤:

流程大致如此,在此之前,要先让人脸被准确的找出来,也就是能准确区分人脸的分类器,在这里我们可以用已经训练好的分类器,网上种类较全,分类准确度也比较高,我们也可以节约在这方面花的时间。

ps:小编的宝贝来源已经放在下面链接里啦~

推荐:GITHUB

https://github.com/opencv/opencv/tree/master/data/haarcascades

既然用的是python,那自然少不了包的使用了,在看代码之前,我们先将整个项目所需要的包罗列一下:

· CV2(Opencv):图像识别,摄像头调用

· os:文件操作

· numpy:NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库

· PIL:Python Imaging Library,Python平台事实上图像处理的标准库

02 接下来

2.1 对照人脸获取

#-----获取人脸样本-----
import cv2 #调用笔记本内置摄像头,参数为0,如果有其他的摄像头可以调整参数为1,2
cap = cv2.VideoCapture(0)
#调用人脸分类器,要根据实际路径调整3
face_detector = cv2.CascadeClassifier(r'X:/Users/73950/Desktop/FaceRec/haarcascade_frontalface_default.xml') #待更改
#为即将录入的脸标记一个id
face_id = input('\n User data input,Look at the camera and wait ...')
#sampleNum用来计数样本数目
count = 0 while True:
#从摄像头读取图片
success,img = cap.read()
#转为灰度图片,减少程序符合,提高识别度
if success is True:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
break
#检测人脸,将每一帧摄像头记录的数据带入OpenCv中,让Classifier判断人脸
#其中gray为要检测的灰度图像,1.3为每次图像尺寸减小的比例,5为minNeighbors
faces = face_detector.detectMultiScale(gray, 1.3, 5) #框选人脸,for循环保证一个能检测的实时动态视频流
for (x, y, w, h) in faces:
#xy为左上角的坐标,w为宽,h为高,用rectangle为人脸标记画框
cv2.rectangle(img, (x, y), (x+w, y+w), (255, 0, 0))
#成功框选则样本数增加
count += 1
#保存图像,把灰度图片看成二维数组来检测人脸区域
#(这里是建立了data的文件夹,当然也可以设置为其他路径或者调用数据库)
cv2.imwrite("data/User."+str(face_id)+'.'+str(count)+'.jpg',gray[y:y+h,x:x+w])
#显示图片
cv2.imshow('image',img)
#保持画面的连续。waitkey方法可以绑定按键保证画面的收放,通过q键退出摄像
k = cv2.waitKey(1)
if k == '27':
break
#或者得到800个样本后退出摄像,这里可以根据实际情况修改数据量,实际测试后800张的效果是比较理想的
elif count >= 800:
break #关闭摄像头,释放资源
cap.realease()
cv2.destroyAllWindows()

经小编测试,在执行

“face_detector = cv2.CascadeClssifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”此语句时,实际路径中的目录名尽量不要有中文字符出现,否则容易报错。

这样,你的电脑就能看到你啦!

2.2 通过算法建立对照模型

本次所用的算法为opencv中所自带的算法,opencv较新版本中(我使用的是2.4.8)提供了一个FaceRecognizer类,里面有相关的一些人脸识别的算法及函数接口,其中包括三种人脸识别算法(我们采用的是第三种)

1.eigenface

2.fisherface

3.LBPHFaceRecognizer

LBP是一种特征提取方式,能提取出图像的局部的纹理特征,最开始的LBP算子是在3X3窗口中,取中心像素的像素值为阀值,与其周围八个像素点的像素值比较,若像素点的像素值大于阀值,则此像素点被标记为1,否则标记为0。这样就能得到一个八位二进制的码,转换为十进制即LBP码,于是得到了这个窗口的LBP值,用这个值来反映这个窗口内的纹理信息。

LBPH是在原始LBP上的一个改进,在opencv支持下我们可以直接调用函数直接创建一个LBPH人脸识别的模型。

我们在前一部分的同目录下创建一个Python文件,文件名为trainner.py,用于编写数据集生成脚本。同目录下,创建一个文件夹,名为trainner,用于存放我们训练后的识别器。

#-----建立模型、创建数据集-----#-----建立模型、创建数据集-----

import os
import cv2
import numpy as np
from PIL import Image
#导入pillow库,用于处理图像
#设置之前收集好的数据文件路径
path = 'data' #初始化识别的方法
recog = cv2.face.LBPHFaceRecognizer_create() #调用熟悉的人脸分类器
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') #创建一个函数,用于从数据集文件夹中获取训练图片,并获取id
#注意图片的命名格式为User.id.sampleNum
def get_images_and_labels(path):
image_paths = [os.path.join(path,f) for f in os.listdir(path)]
#新建连个list用于存放
face_samples = []
ids = [] #遍历图片路径,导入图片和id添加到list中
for image_path in image_paths: #通过图片路径将其转换为灰度图片
img = Image.open(image_path).convert('L') #将图片转化为数组
img_np = np.array(img,'uint8') if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
continue #为了获取id,将图片和路径分裂并获取
id = int(os.path.split(image_path)[-1].split(".")[1])
faces = detector.detectMultiScale(img_np) #将获取的图片和id添加到list中
for(x,y,w,h) in faces:
face_samples.append(img_np[y:y+h,x:x+w])
ids.append(id)
return face_samples,ids #调用函数并将数据喂给识别器训练
print('Training...')
faces,ids = get_images_and_labels(path)
#训练模型
recog.train(faces,np.array(ids))
#保存模型
recog.save('trainner/trainner.yml')

这就让电脑认识到你是与众不同的那颗星~

2.3 识别

检测,校验,输出其实都是识别的这一过程,与前两个过程不同,这是涉及实际使用的过程,所以我们把他整合放在一个统一的一个文件内。

#-----检测、校验并输出结果-----
import cv2 #准备好识别方法
recognizer = cv2.face.LBPHFaceRecognizer_create() #使用之前训练好的模型
recognizer.read('trainner/trainner.yml') #再次调用人脸分类器
cascade_path = "haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(cascade_path) #加载一个字体,用于识别后,在图片上标注出对象的名字
font = cv2.FONT_HERSHEY_SIMPLEX idnum = 0
#设置好与ID号码对应的用户名,如下,如0对应的就是初始 names = ['初始','admin','user1','user2','user3'] #调用摄像头
cam = cv2.VideoCapture(0)
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4) while True:
ret,img = cam.read()
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#识别人脸
faces = face_cascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW),int(minH))
)
#进行校验
for(x,y,w,h) in faces:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
idnum,confidence = recognizer.predict(gray[y:y+h,x:x+w]) #计算出一个检验结果
if confidence < 100:
idum = names[idnum]
confidence = "{0}%",format(round(100-confidence))
else:
idum = "unknown"
confidence = "{0}%",format(round(100-confidence)) #输出检验结果以及用户名
cv2.putText(img,str(idum),(x+5,y-5),font,1,(0,0,255),1)
cv2.putText(img,str(confidence),(x+5,y+h-5),font,1,(0,0,0),1) #展示结果
cv2.imshow('camera',img)
k = cv2.waitKey(20)
if k == 27:
break #释放资源
cam.release()
cv2.destroyAllWindows()

现在,你的电脑就能识别出你来啦!

通过其他组合也可以实现开机检测等多种功能,你学会了吗?

下面是小编审稿时的测试结果以及出现的一些问题哦~希望对大家有帮助(呲牙.jpg)

测试结果

小编审稿测试过程中出现的问题:

(1)版本问题

解决方法:经过小编无数次的失败,提示大家最好安装python2.7,可以直接使用 pip install numpy 以及pip install opencv-python安装numpy 以及对应python版本的opencv

(如果使用的是Anaconda2,pip相关命令可在开始菜单Anaconda2文件夹下的Anaconda Prompt中输入)

点击推文中给出的链接,将github中的文件下载后放至编译文件所在的文件夹下,并更改代码中的相关目录

(2)如果提示“module' object has no attribute 'face'”

解决方法:可以输入 pip install opencv-contrib-python解决,如果提示需要commission,可以在后面加上 --user,即 pip install opencv-contrib-python --user

如有其它问题欢迎大家随时联系我们呀

10分钟手把手教你运用Python实现简单的人脸识别的更多相关文章

  1. 手把手教你用1行代码实现人脸识别 --Python Face_recognition

    环境要求: Ubuntu17.10 Python 2.7.14 环境搭建: 1. 安装 Ubuntu17.10 > 安装步骤在这里 2. 安装 Python2.7.14 (Ubuntu17.10 ...

  2. 每天记录一点:NetCore获得配置文件 appsettings.json vue-router页面传值及接收值 详解webpack + vue + node 打造单页面(入门篇) 30分钟手把手教你学webpack实战 vue.js+webpack模块管理及组件开发

    每天记录一点:NetCore获得配置文件 appsettings.json   用NetCore做项目如果用EF  ORM在网上有很多的配置连接字符串,读取以及使用方法 由于很多朋友用的其他ORM如S ...

  3. 手把手教你吧Python应用到实际开发 不再空谈悟法☝☝☝

    手把手教你吧Python应用到实际开发 不再空谈悟法☝☝☝ 想用python做机器学习吗,是不是在为从哪开始挠头?这里我假定你是新手,这篇文章里咱们一起用Python完成第一个机器学习项目.我会手把手 ...

  4. 30分钟手把手教你学webpack实战

    30分钟手把手教你学webpack实战 阅读目录 一:什么是webpack? 他有什么优点? 二:如何安装和配置 三:理解webpack加载器 四:理解less-loader加载器的使用 五:理解ba ...

  5. 10分钟搭建一个小型网页(python django)(hello world!)

    10分钟搭建一个小型网页(python django)(hello world!) 1.安装django pip install django 安装成功后,在Scripts目录下存在django-ad ...

  6. 手把手教你用Python搭建自己的量化回测框架【均值回归策略】

    手把手教你用Python搭建自己的量化回测框架[均值回归策略] 引言 大部分量化策略都可以归类为均值回归与动量策略.事实上,只有当股票价格是均值回归或趋势的,交易策略才能盈利.否则,价格是随机游走的, ...

  7. 手把手教你吧Python应用到实际开发 不再空谈悟法✍✍✍

    手把手教你吧Python应用到实际开发 不再空谈悟法 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问 ...

  8. 手把手教你把Python应用到实际开发 不再空谈语法

    手把手教你把Python应用到实际开发 不再空谈语法 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问 ...

  9. 手把手教你使用Python爬取西刺代理数据(下篇)

    /1 前言/ 前几天小编发布了手把手教你使用Python爬取西次代理数据(上篇),木有赶上车的小伙伴,可以戳进去看看.今天小编带大家进行网页结构的分析以及网页数据的提取,具体步骤如下. /2 首页分析 ...

随机推荐

  1. Python 判断字符串是否包含中文

    一.摘要 使用 xlrd 模块打开带中文的excel文件时,会报错. FileNotFoundError: [Errno 2] No such file or directory: 'xx.xlsx' ...

  2. 聊一聊,React开发中应该规避的点

    原文永久链接: https://github.com/AttemptWeb..... 下面说到的React开发中注意的问题,部分是自己遇到过的点,部分是收集的,也算是React代码优化部分,这次做一个 ...

  3. sql group by hour 按小时分组统计

    Time字段以小时分组统计 select datepart(hour,time) hour,count(1) count from table where Similarity<75 group ...

  4. Keil MDK fromelf生成bin文件

    找到Keil安装目录中fromelf.exe 配置Keil fromelf.exe --bin -o -\OBJ\LED.bin -\OBJ\LED.axf –bin:二进制文件 –i32:Intel ...

  5. Core Animation笔记(变换)

    1.仿射变换 CGAffineTransformMakeScale : CGAffineTransformMakeTranslation CGAffineTransformMakeRotation(C ...

  6. shell脚本4种执行方式

    Linux中shell脚本的执行通常有4种方式,分别为工作目录执行,绝对路径执行,sh执行,shell环境执行. 首先,看下我们的脚本内容 [tan@tan scripts]$ ll total -r ...

  7. TFTP启动内核、设备树,NFS启动FS

    一.软硬件平台 1.开发板:创龙AM3359核心板,网口采用RMII形式. 2.UBOOT版本:U-Boot-2016.05,采用FDT和DM. 3.交换芯片MARVELL的88E6321. 二.问题 ...

  8. Kubernetes系统基础

    Kubernetes系统基础 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.容器编排系统概述 1>.容器编排系统生态圈 Docker通过“镜像”机制极富创造性地解决了应用 ...

  9. linux的virtualenv和virtualenvwarpper

    转自:https://www.cnblogs.com/qq631243523/p/10191748.html 一,介绍 在使用 Python 开发的过程中,工程一多,难免会碰到不同的工程依赖不同版本的 ...

  10. Spring -10 -<bean>的 scope 属性 -singleton 默认值/prototype 多例 /request /session /application /global session

    1.<bean>的属性; 2.作用:控制对象有效范围(单例,多例等)3.<bean/>标签对应的对象默认是单例的. 3.1无论获取多少次,都是同一个对象 Teacher t1 ...