The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices. These two sets are also groups under multiplication. They are called the general linear group $\GL(n)$ and the unitary group $\U(n)$, respectively.

Solution.

(1). $\GL(n)$ is a dense subset of $\M(n)$, the set of all $n\times n$ matrices. Indeed, by the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{cccc} \vLm_1&&*\\ &\vLm_1&\\ &&\ddots&\\ &&&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea},\quad \lm_1=0,\quad \lm_i \neq 0,\ 2\leq i\leq s. \eex$$ We may just replace the $\lm_1=0$ by $\ve>0$ to get an invertible matrix $B$ such that $\sen{A-B}_2=\ve^2$.

(2). $\GL(n)$ is an open subset of $\M(n)$. In fact, by continuity, $$\bex \det A_n=0,\quad A_n\to A\ra \det A=0. \eex$$

(3). $\U(n)$ is a bounded, closed subset of $\M(n)$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. sql查找最小缺失值与重用被删除的键(转载)

    转载自:http://blog.csdn.net/yanghua_kobe/article/details/6262550 在数据处理时,我们经常会使用一些“自增”的插入方式来处理数据.比如学生学号: ...

  2. Hibernate从入门到精通(六)一对一双向关联映射

    在上次的博文Hibernate从入门到精通(五)一对一单向关联映射中我们讲解了一下一对一单向关联映射,这次我们继续讲解一下与之对应的一对一双向关联映射. 一对一双向关联 与一对一单向关联映射所不同的的 ...

  3. bnu 4352 XsugarX的疯狂按键识别(暴力模拟)

    http://www.bnuoj.com/bnuoj/problem_show.php?pid=4352 [题意]:给你个长串,输出该长串中能第一放出的技能,每个技能有对应的一个小子串,不能放出任何技 ...

  4. webstorm 11 安装配置 grunt 时遇到的问题及解决办法

    想学grunt的可以看看这篇文章,写的很有意思,教程之类的我就不写了,网上很多资料,我就记录下我遇到的问题和解决办法. http://yujiangshui.com/grunt-basic-tutor ...

  5. 1045: [HAOI2008] 糖果传递 - BZOJ

    Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1.Input 小朋友个数n 下面n行 aiOutput 求使所有人获得均等糖果的 ...

  6. select count(*)和select count(1)的区别 (转)

    A 一般情况下,Select Count (*)和Select Count(1)两着返回结果是一样的 假如表沒有主键(Primary key), 那么count(1)比count(*)快, 如果有主键 ...

  7. Java Swing 快捷键

    Java  Swing 快捷键 给Java Swing 编程中按钮或者其他组件事件添加快捷键的方法: Component.setAccelerator(KeyStroke.getKeyStroke(‘ ...

  8. 学习笔记:shared_ptr陷阱

    条款1:不要把一个原生指针给多个shared_ptr管理 int* ptr = new int; shared_ptr<int> p1(ptr); shared_ptr<int> ...

  9. pdb文件 小结

    .pdb文件,是VS生成的用于调试的符号文件(program database),保存着调试的信息.在VS的工程属性,C/C++,调试信息格式,设置/Zi,那么VS就会在构建项目时创建PDB文件. 在 ...

  10. ajax返回正个页面