[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices. These two sets are also groups under multiplication. They are called the general linear group $\GL(n)$ and the unitary group $\U(n)$, respectively.
Solution.
(1). $\GL(n)$ is a dense subset of $\M(n)$, the set of all $n\times n$ matrices. Indeed, by the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{cccc} \vLm_1&&*\\ &\vLm_1&\\ &&\ddots&\\ &&&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea},\quad \lm_1=0,\quad \lm_i \neq 0,\ 2\leq i\leq s. \eex$$ We may just replace the $\lm_1=0$ by $\ve>0$ to get an invertible matrix $B$ such that $\sen{A-B}_2=\ve^2$.
(2). $\GL(n)$ is an open subset of $\M(n)$. In fact, by continuity, $$\bex \det A_n=0,\quad A_n\to A\ra \det A=0. \eex$$
(3). $\U(n)$ is a bounded, closed subset of $\M(n)$.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 2016 系统设计第一期 (档案一)MVC 和 Bootstrap 表单转换
bootstrap <form role="form"> <div class="form-group"> <label for= ...
- ios 基于CAEmitterLayer的雪花,烟花,火焰,爱心等效果demo(转)
转载自:http://blog.csdn.net/mad2man/article/details/16898369 分类: cocoa SDK2013-11-23 11:52 388人阅读 评论(0) ...
- dubbo zookeeper模型
本文摘自dubbo的官方文档,原文请参见: http://alibaba.github.io/dubbo-doc-static/User+Guide-zh.htm#UserGuide-zh-Zooke ...
- Linux学习笔记(5)-进程管理
进程简介 进程是正在执行的一个程序或命令,每一个进程都有自己的地址空间,并占有一定的系统资源.感性的认识,进程就是一个正在运行的程序 进程管理的作用 判断服务器的运行状态 查看系统中有哪些进程 杀死进 ...
- 4.3 spring-嵌入式beans标签的解析
对于嵌入式的beans标签,想信大家很少使用过,或者接触过,起码,我本人就没用过. 它非常类似于Import标签所提供的功能; 使用如下: <?xml version="1.0&quo ...
- 关闭MyEclipse的Quick Update
关闭MyEclipse的Quick Update, Windows > Preferences > MyEclipse > Community Essentials, 把选项 &qu ...
- hdu 4681
将c串从a,b串中删去后求最长公子列 直接暴会超时 #include <cstdio> #include <cstdlib> #include <algorithm&g ...
- 【leetcode】Longest Common Prefix (easy)
Write a function to find the longest common prefix string amongst an array of strings. 思路:找最长公共前缀 常规 ...
- linux mysql为root用户初始化密码和改变root密码
初始化密码: 由于安装MySQL完后,MySQL会自动提供一个不带密码的root用户,为了安全起见给root设置密码: #mysqladmin -u root password 123 (123为密码 ...
- Android ActionBar通过Tab进行不同的Fragment之间的交换
ActionBar的使用常见于4.0系统,其Tab的使用挺广泛的. 在ActionBar中添加标签(Tabs),每个标签对应的是一个Fragment,点击不同的Tab时,就会切换到对应的Fragmen ...