[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices. These two sets are also groups under multiplication. They are called the general linear group $\GL(n)$ and the unitary group $\U(n)$, respectively.
Solution.
(1). $\GL(n)$ is a dense subset of $\M(n)$, the set of all $n\times n$ matrices. Indeed, by the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{cccc} \vLm_1&&*\\ &\vLm_1&\\ &&\ddots&\\ &&&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea},\quad \lm_1=0,\quad \lm_i \neq 0,\ 2\leq i\leq s. \eex$$ We may just replace the $\lm_1=0$ by $\ve>0$ to get an invertible matrix $B$ such that $\sen{A-B}_2=\ve^2$.
(2). $\GL(n)$ is an open subset of $\M(n)$. In fact, by continuity, $$\bex \det A_n=0,\quad A_n\to A\ra \det A=0. \eex$$
(3). $\U(n)$ is a bounded, closed subset of $\M(n)$.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- ios播放声音中断后台音乐的问题
今天遇到一个ios播放声音中断后台音乐的问题,在我的app中如果调用AVAudioSession 播放完声音,后台的qq音乐偶尔不能恢复,而网易云音乐一次都不能恢复播放,研究了一下AVAudioS ...
- Hibernate从入门到精通(四)基本映射
映射的概念 在上次的博文Hibernate从入门到精通(三)Hibernate配置文件我们已经讲解了一下Hibernate中的两种配置文件,其中提到了两种配置文件的主要区别就是XML可以配置映射.这里 ...
- c#对字符串的各种操作
1.字符串定义 2.在字符串后面追加字符串 3.获取字符串长度 4.截取字符串的一部分 5.字符串转为比特码 6.查指定位置是否为空字符 7.查字符串是否是标点符号 8.截头去尾(Trim) 9.替换 ...
- velocity语法
1.声明变量 #set($var = XXX) 右边可以是以下的内容 Variable reference String literal Property reference Method refer ...
- WebUploader API
Uploader new Uploader( opts ) ⇒ Uploader 上传入口类. var uploader = WebUploader.Uploader({ swf: 'path_of_ ...
- Android Studio 单刷《第一行代码》系列 03 —— Activity 基础
前情提要(Previously) 本系列将使用 Android Studio 将<第一行代码>(书中讲解案例使用Eclipse)刷一遍,旨在为想入坑 Android 开发,并选择 Andr ...
- bzoj 2744: [HEOI2012]朋友圈 二分图匹配
2744: [HEOI2012]朋友圈 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 612 Solved: 174[Submit][Status] ...
- The 9th Zhejiang Provincial Collegiate Programming Contest->Problem D:D - Draw Something Cheat
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3603 题意:在给出的字符串中找出每行都出现的字母按字典序排序. #incl ...
- ASProtect.SKE.2.11 stolen code解密
关于ASProtect.SKE.2.11 stolen code方面的文章已经很多了,今天我想再详细地说说它的细节,献给喜欢破解的兄弟们. stolen code并不可怕! ASProtect.SKE ...
- Windows调试的基石——符号(1)
当应用程序被链接以后,代码被逐一地翻译为一个个的地址,优化以后的代码可能初看起来更是面目全非.每当我们使用vs或者windbg等微软的调试工具进行调试的时候,我们可以方便地使用变量名来查看内存.可以使 ...