Ant Counting
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4982   Accepted: 1896

Description

Bessie was poking around the ant hill one day watching the ants march to and fro while gathering food. She realized that many of the ants were siblings, indistinguishable from one another. She also realized the sometimes only one ant would go for food, sometimes a few, and sometimes all of them. This made for a large number of different sets of ants!

Being a bit mathematical, Bessie started wondering. Bessie noted that the hive has T (1 <= T <= 1,000) families of ants which she labeled 1..T (A ants altogether). Each family had some number Ni (1 <= Ni <= 100) of ants.

How many groups of sizes S, S+1, ..., B (1 <= S <= B <= A) can be formed?

While observing one group, the set of three ant families was seen as {1, 1, 2, 2, 3}, though rarely in that order. The possible sets of marching ants were:

3 sets with 1 ant: {1} {2} {3} 
5 sets with 2 ants: {1,1} {1,2} {1,3} {2,2} {2,3} 
5 sets with 3 ants: {1,1,2} {1,1,3} {1,2,2} {1,2,3} {2,2,3} 
3 sets with 4 ants: {1,2,2,3} {1,1,2,2} {1,1,2,3} 
1 set with 5 ants: {1,1,2,2,3}

Your job is to count the number of possible sets of ants given the data above.

Input

* Line 1: 4 space-separated integers: T, A, S, and B

* Lines 2..A+1: Each line contains a single integer that is an ant type present in the hive

Output

* Line 1: The number of sets of size S..B (inclusive) that can be created. A set like {1,2} is the same as the set {2,1} and should not be double-counted. Print only the LAST SIX DIGITS of this number, with no leading zeroes or spaces.

Sample Input

3 5 2 3
1
2
2
1
3

Sample Output

10

Hint

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or size 3 can be made?

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

题意:有一个蚁巢,里面有T个不同的家族,每个家族有N_i只蚂蚁,共有A只蚂蚁,同家族蚂蚁无区分,从这A只蚂蚁中选取K只蚂蚁组成一个集合(S<=K<=B),问共能组成多少集合。
思路:定义dp[i][j]:从前i个家族取出j只蚂蚁的组合数。那么相当于考虑第i个家族若取出k(k<=min{family[i],j})只蚂蚁,前(i-1)个家族取出(j-k)只蚂蚁即可。
                min{family[i],j}
所以dp[i][j]=∑dp[i-1][j-k] 
                 k=0
节省空间考虑,可以用滚动数组。
AC代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int MOD=;
const int T_MAX=,A_MAX=;
int family[T_MAX];
int dp[][A_MAX+];
int main() {
int T,A,S,B;
while (cin >>T>> A>>S>>B) {
memset(family, , sizeof(family));
for (int i = ;i < A;i++) {
int index;
cin >> index;
family[index]++;
}
int total = ;
dp[][] = ;//从0个家族取出0只蚂蚁,只有一种可能
for (int i = ;i <= T;i++) {
total += family[i];
int cur =i& ;
int pre = (i - ) & ;
memset(dp[cur],,sizeof(dp[cur]));//清除上次记录
for (int k = ;k <= family[i];k++) {
for (int j = total;j >= k;j--) {//这j只蚂蚁总数不能超过这几个家族蚂蚁的总数
dp[cur][j] =(dp[cur][j]+ dp[pre][j - k])%MOD;
}
}
}
int cur = T&;
int result=;
for (int i = S;i <= B;i++) {
result =(result+ dp[cur][i])%MOD;
}
cout << result << endl;
memset(dp[(T - ) & ], , sizeof(dp[(T - ) & ]));
}
return ;
}
 
 

poj 3046 Ant Counting的更多相关文章

  1. poj 3046 Ant Counting(多重集组合数)

    Ant Counting Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total ...

  2. poj 3046 Ant Counting (DP多重背包变形)

    题目:http://poj.org/problem?id=3046 思路: dp [i] [j] :=前i种 构成个数为j的方法数. #include <cstdio> #include ...

  3. poj 3046 Ant Counting——多重集合的背包

    题目:http://poj.org/problem?id=3046 多重集合的背包问题. 1.式子:考虑dp[ i ][ j ]能从dp[ i-1 ][ k ](max(0 , j - c[ i ] ...

  4. POJ 3046 Ant Counting ( 多重集组合数 && 经典DP )

    题意 : 有 n 种蚂蚁,第 i 种蚂蚁有ai个,一共有 A 个蚂蚁.不同类别的蚂蚁可以相互区分,但同种类别的蚂蚁不能相互区别.从这些蚂蚁中分别取出S,S+1...B个,一共有多少种取法. 分析 :  ...

  5. POJ 3046 Ant Counting DP

    大致题意:给你a个数字,这些数字范围是1到t,每种数字最多100个,求问你这些a个数字进行组合(不包含重复),长度为s到b的集合一共有多少个. 思路:d[i][j]——前i种数字组成长度为j的集合有多 ...

  6. POJ 3046 Ant Counting(递推,和号优化)

    计数类的问题,要求不重复,把每种物品单独考虑. 将和号递推可以把转移优化O(1). f[i = 第i种物品][j = 总数量为j] = 方案数 f[i][j] = sigma{f[i-1][j-k], ...

  7. 【POJ - 3046】Ant Counting(多重集组合数)

    Ant Counting 直接翻译了 Descriptions 贝西有T种蚂蚁共A只,每种蚂蚁有Ni只,同种蚂蚁不能区分,不同种蚂蚁可以区分,记Sum_i为i只蚂蚁构成不同的集合的方案数,问Sum_k ...

  8. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  9. 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 85  Solved: 40[S ...

随机推荐

  1. Codeforces Gym 100342D Problem D. Dinner Problem Dp+高精度

    Problem D. Dinner ProblemTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1003 ...

  2. 杭电 3177 Crixalis&#39;s Equipment

    http://acm.hdu.edu.cn/showproblem.php? pid=3177 Crixalis's Equipment Time Limit: 2000/1000 MS (Java/ ...

  3. delphi 动态建立WebBrower

    //Delphi动态建立WebBrowerunit Main;interfaceuses  Windows, Messages, SysUtils, Variants, Classes, Graphi ...

  4. MySQL Cluster2个数据节点压力测试--mysqlslap工具压400W写

    锅巴哥的个人建议:cluster叫电信运营商版本,所以基本上在很大的用户并发量的情况下才会用到,对连接数的线性增长要求高的场景,千兆就不用想了, 没万兆就不用玩了. 很不幸,我的就是千兆网络,我的数据 ...

  5. JVM自动内存管理学习笔记

    对于使用 C.C++ 的程序员来说,在内存管理领域,他们既是拥有最高权力的皇帝又是从事最基础工作的劳动人民——拥有每一个对象的“所有权”,又担负着每一个对象生命开始到终结的维护责任.对于 Java 程 ...

  6. px,em,rem的区别

    PX特点 1. IE无法调整那些使用px作为单位的字体大小: 2. 国外的大部分网站能够调整的原因在于其使用了em或rem作为字体单位: 3. Firefox能够调整px和em,rem,但是96%以上 ...

  7. Android基本控件之ListView(二)<ListView优化>

    之前我们说到ListView的基本用法.但是,有很多的时候会额外的占用一些内存,从而消耗了性能.既然有消耗性能的可能,那么我们就对其做出相应的优化 我们首先来说说优化的步骤: 第一步.将宽和高设置为填 ...

  8. 使用cocos2d-x制作 Texture unpacker

    使用cocos2d-x制作 Texture unpacker 没错,就是unpacker. 在大多数游戏包里面,可以找到很多纹理图集,他们基本上是用texture packer制作的,有plist文件 ...

  9. Scala中的偏函数与部分应用函数

    Scala中有PartialFunction的概念, 同时还要一个概念叫Partial Applied Function. 前者译作偏函数, 后者译作"偏应用函数"或"部 ...

  10. 集群服务器Session同步

    事实上,网站总是有状态的.每一个登录信息.用户信息常常被存储在session内部.而当一个网站被部署在不止一台服务器的时候,就会遇到session同步的问题.事实上即使一个很小的网站,也要至少有两台服 ...