《训练之南》上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到。

题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西。

经过书上的神分析,最终将所求变为:

共n个叶子,每个非叶节点至少有两个子节点的 树的个数f(n)。最终输出2 × f(n)

首先可以枚举一下根节点的子树的叶子个数,对于有i个叶子的子树,共有f(i)种,

设d(i, j)表示每棵子树最多有i个叶节点,一共有j个叶节点的方案数。

所求答案为d(n-1, n)

假设恰好有i个叶子的子树有p棵,因为每个子树互相独立,所以对于p个有i个叶子的子树,共有C(f(i)+p-1, p)种情况,重复元素的全排列。

d(i, j) = sum{C(f(i)+p-1, p) × d(i-1, j-p×i) | p >= 0 且 p×i <= j }

边界:

d(i, 0) = d(i, 1) = 1 (i >= 1), d(0, 0) = 1

 #include <cstdio>

 const int maxn = ;
long long d[][], f[]; long long C(long long n, long long m)
{
long long ans = ;
if(m > n - m) m = n - m;
for(int i = ; i < m; i++)
{
ans *= n - i;
ans /= i+;
}
return ans;
} int main()
{
f[] = ;
int n = maxn;
d[][] = ;
for(int i = ; i <= n; i++) d[i][] = d[i][] = ;
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n; j++)
{
for(int p = ; p * i <= j; p++)
d[i][j] += C(f[i]+p-, p) * d[i-][j-p*i];
}
f[i+] = d[i][i+];
} while(scanf("%d", &n) == && n)
printf("%lld\n", n == ? : f[n] * ); return ;
}

代码君

UVa 10253 (组合数 递推) Series-Parallel Networks的更多相关文章

  1. loj #6261 一个人的高三楼 FFT + 组合数递推

    \(\color{#0066ff}{ 题目描述 }\) 一天的学习快要结束了,高三楼在晚自习的时候恢复了宁静. 不过,\(HSD\) 桑还有一些作业没有完成,他需要在这个晚自习写完.比如这道数学题: ...

  2. UVa 10520【递推 搜索】

    UVa 10520 哇!简直恶心的递推,生推了半天..感觉题不难,但是恶心,不推出来又难受..一不小心还A了[]~( ̄▽ ̄)~*,AC的猝不及防... 先递推求出f[i][1](1<=i< ...

  3. Uva 10446【递推,dp】

    UVa 10446 求(n,bcak)递归次数.自己推出来了一个式子: 其实就是这个式子,但是不知道该怎么写,怕递归写法超时.其实直接递推就好,边界条件易得C(0,back)=1.C(1,back)= ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  6. UVa 1645 Count (递推,数论)

    题意:给定一棵 n 个结点的有根树,使得每个深度中所有结点的子结点数相同.求多棵这样的树. 析:首先这棵树是有根的,那么肯定有一个根结点,然后剩下的再看能不能再分成深度相同的子树,也就是说是不是它的约 ...

  7. Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)

    有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...

  8. UVA - 11021 - Tribles 递推概率

    GRAVITATION, n.“The tendency of all bodies to approach one another with a strengthproportion to the ...

  9. 紫书 习题 10-10 UVa 1645(递推)

    除了根节点以外,有n-1个节点,然后就看n-1的因数有那些,所有因数加起来(递推)就好了. #include<cstdio> #define REP(i, a, b) for(int i ...

随机推荐

  1. clion 帮助文档 EN

    下载时间 2015年10月 下载地址:http://pan.baidu.com/s/1E4fgE 备用地址:链接:http://pan.baidu.com/s/1bn6u5Wj 密码:icn4

  2. Ext学习-基础概念,核心思想介绍

    1.目标   本阶段的目标是通过学习一些基础知识来对EXTJS有个整体的了解,知道EXTJS的基础语法,核心设计思想等等 2.内容   1.基础部分学习   2.EXTJS类系统介绍   3.EXTJ ...

  3. Html特殊字符转义处理

    #region 将Html特殊字符转义处理        /// <summary>        /// 将Html特殊字符转义处理        /// </summary> ...

  4. 电脑问题交流QQ群

    各种电脑问题交流QQ群号 164853622 系统重装 系统恢复 系统出问题 电脑主页 修改 主页 搜狗 软件卸载 顽固 病毒 讨论

  5. oracle 快速删除大批量数据方法(全部删除,条件删除,删除大量重复记录)

    oracle 快速删除大批量数据方法(全部删除,条件删除,删除大量重复记录) 分类: ORACLE 数据库 2011-05-24 16:39 8427人阅读 评论(2) 收藏 举报 oracledel ...

  6. SQL server 复习一

    第一天 下面我们从最基础的开始: 在运行里面输入:services.msc 一.启动服务 二.数据库登录的两种身份验证方式 另外一种身份验证方式就是SQL Server身份验证. sa不能使用的时候可 ...

  7. 李洪强iOS开发之【零基础学习iOS开发【01-前言】03-前景和难易度分析

    一.iOS开发的前景 2012年3月份,苹果公司的市值已经突破5000亿美元,成为世界上市值最大的公司.5000亿是神马概念呢? 可以帮助陷入欧债危机的8个国家偿还债务 可以买下35个天安门广场.34 ...

  8. 【Linux高频命令专题(17)】head

    概述 head 与 tail 就像它的名字一样的浅显易懂,它是用来显示开头或结尾某个数量的文字区块,head 用来显示档案的开头至标准输出中,而 tail 想当然尔就是看档案的结尾. 命令格式 hea ...

  9. vlc/ffmepg/mplayer/gstreamer/openmax/mpc/ffdshow/directshow

    一些应该学习的开源框架与库用途和差别 一.播放器层次 这个层次上,是直接可以用的软件,已经做完了一切工作,如果我们需要用他们,是不需要写一行代码的,编译通过就可以拿来使用了,对于国内这些山寨公司来说, ...

  10. Qt出现警告 Unescaped backslashes are deprecated!解决办法

    Fixing Qt Warning: Unescaped backslashes are deprecated! From: http://www.openguru.com/2011/10/fixin ...