uva208 - Firetruck
The Center City fire department collaborates with the transportation department to maintain maps of the city which reflects the current status of the city streets. On any given day, several streets are closed for repairs or construction. Firefighters need to be able to select routes from the firestations to fires that do not use closed streets.
Central City is divided into non-overlapping fire districts, each containing a single firestation. When a fire is reported, a central dispatcher alerts the firestation of the district where the fire is located and gives a list of possible routes from the firestation to the fire. You must write a program that the central dispatcher can use to generate routes from the district firestations to the fires.
Input
The city has a separate map for each fire district. Streetcorners of each map are identified by positive integers less than 21, with the firestation always on corner #1. The input file contains several test cases representing different fires in different districts.
- The first line of a test case consists of a single integer which is the number of the streetcorner closest to the fire.
- The next several lines consist of pairs of positive integers separated by blanks which are the adjacent streetcorners of open streets. (For example, if the pair 4 7 is on a line in the file, then the street between streetcorners 4 and 7 is open. There are no other streetcorners between 4 and 7 on that section of the street.)
- The final line of each test case consists of a pair of 0's.
Output
For each test case, your output must identify the case by number (CASE #1, CASE #2, etc). It must list each route on a separate line, with the streetcorners written in the order in which they appear on the route. And it must give the total number routes from firestation to the fire. Include only routes which do not pass through any streetcorner more than once. (For obvious reasons, the fire department doesn't want its trucks driving around in circles.)
Output from separate cases must appear on separate lines.
The following sample input and corresponding correct output represents two test cases.
Sample Input
6
1 2
1 3
3 4
3 5
4 6
5 6
2 3
2 4
0 0
4
2 3
3 4
5 1
1 6
7 8
8 9
2 5
5 7
3 1
1 8
4 6
6 9
0 0
Sample Output
CASE 1:
1 2 3 4 6
1 2 3 5 6
1 2 4 3 5 6
1 2 4 6
1 3 2 4 6
1 3 4 6
1 3 5 6
There are 7 routes from the firestation to streetcorner 6.
CASE 2:
1 3 2 5 7 8 9 6 4
1 3 4
1 5 2 3 4
1 5 7 8 9 6 4
1 6 4
1 6 9 8 7 5 2 3 4
1 8 7 5 2 3 4
1 8 9 6 4
There are 8 routes from the firestation to streetcorner 4.
// 题意:给一个无向图,输出从结点1到给定结点的所有路径,要求结点不能重复经过
// 算法:数据不难,直接回溯即可。但是需要注意两点:
// 1. 要事先判断路径是否存在,否则会超时
// 2. 必须按照字典序从小到大输出各路径。本程序的解决方法是给每个点的相邻点编号排序
预判dfs复杂度:
回溯dfs复杂度:O(b^n) b为分支数
算法耗时 9 ms
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=21+5;
int target, cnt;
int route[maxn], vis[maxn];
vector<int> G[maxn]; void dfs(int d, int v)
{
if(v==target) {
cnt++;
for(int i=0;i<d-1;i++) printf("%d ", route[i]);
printf("%d\n", route[d-1]);
return;
}
for(int i=0;i<G[v].size();i++)
{
int u=G[v][i];
if(!vis[u]) {
route[d]=u;
vis[u]=1; dfs(d+1, u); vis[u]=0;
}
}
} bool can_reach_target(int u)
{
if(u==target) return true;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!vis[v]) {
vis[v]=1;
if(can_reach_target(v)) return true;
}
}
return false;
} int main()
{
int kase=0;
while(scanf("%d", &target)==1) {
int u,v;
for(int i=0;i<maxn;i++) G[i].clear();
cnt=0;
while(scanf("%d%d", &u, &v)==2&&(u||v)) {
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0;i<maxn;i++) sort(G[i].begin(), G[i].end()); printf("CASE %d:\n", ++kase);
memset(vis, 0, sizeof(vis));
if(vis[1]=1, can_reach_target(1)) {
memset(vis, 0, sizeof(vis));
route[0]=1;vis[1]=1;
dfs(1, 1);
}
printf("There are %d routes from the firestation to streetcorner %d.\n", cnt, target);
} return 0;
}
解法二:双向搜索进行剪枝
从起点开始搜索之前,很有必要先确定一下有那些路是可以到达目标的。
如何确定那些路可以到目标呢? 我们只需要先从目标点开始进行搜索,把所有搜索到得路径都进行标记。
然后,再从起点处进行搜索,在搜索之前,要先判断一下这个路径是否有被之前标记过,如果没有被标记,那么说明它是不可能
走到目标处的。这样的话,就不会盲目地去走了,也大大提高了效率。
下面代码加入一个mark数组,表示终点可以到达的点。mark_can_reach_target复杂度也是O(E)啦。 算法耗时 9 ms
#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=21+5;
int target, cnt;
int route[maxn], vis[maxn], mark[maxn];
vector<int> G[maxn]; void dfs(int d, int v)
{
if(v==target) {
cnt++;
for(int i=0;i<d-1;i++) printf("%d ", route[i]);
printf("%d\n", route[d-1]);
return;
}
for(int i=0;i<G[v].size();i++)
{
int u=G[v][i];
if(!vis[u] && mark[u]) {
route[d]=u;
vis[u]=1; dfs(d+1, u); vis[u]=0;
}
}
} bool mark_can_reach_target(int u)
{
bool reach_start=false;
if(mark[u])
return false;
mark[u]=1;
if(u==1)
reach_start=true;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(mark_can_reach_target(v))
reach_start=true;
}
return reach_start;
} int main()
{
int kase=0;
while(scanf("%d", &target)==1) {
int u,v;
for(int i=0;i<maxn;i++) G[i].clear();
cnt=0;
while(scanf("%d%d", &u, &v)==2&&(u||v)) {
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0;i<maxn;i++) sort(G[i].begin(), G[i].end()); printf("CASE %d:\n", ++kase);
memset(mark, 0, sizeof(mark));
if(mark_can_reach_target(target)) {
memset(vis, 0, sizeof(vis));
route[0]=1;vis[1]=1;
dfs(1, 1);
}
printf("There are %d routes from the firestation to streetcorner %d.\n", cnt, target);
} return 0;
}
uva208 - Firetruck的更多相关文章
- UVa-208 Firetruck (图的DFS)
UVA-208 天道好轮回.UVA饶过谁. 就是一个图的DFS. 不过这个图的边太多,要事先判一下起点和终点是否联通(我喜欢用并查集),否则会TLE. #include <iostream> ...
- UVA-208 Firetruck (回溯)
题目大意:给一张无向图,节点编号从1到n(n<=20),按字典序输出所有从1到n的路径. 题目分析:先判断从1是否能到n,然后再回溯. 注意:这道题有坑,按样例输出会PE. 代码如下: # in ...
- UVA208 Firetruck 消防车(并查集,dfs)
要输出所有路径,又要字典序,dfs最适合了,用并查集判断1和目的地是否连通即可 #include<bits/stdc++.h> using namespace std; ; int p[m ...
- 7-1 FireTruck 消防车 uva208
题意: 输入一个n <=20 个结点的无向图以及某个结点k 按照字典序从小到大顺序输出从结点1到结点k的所有路径 要求结点不能重复经过 标准回溯法 要实现从小到大字典序 现在数组中排序好即 ...
- 【习题 7-1 UVA-208】Firetruck
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理一下终点能到达哪些点. 暴力就好. 输出结果的时候,数字之间一个空格.. [代码] /* 1.Shoud it use lon ...
- Uva 208 - Firetruck
[题目链接]http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&p ...
- UVa 208 - Firetruck 回溯+剪枝 数据
题意:构造出一张图,给出一个点,字典序输出所有从1到该点的路径. 裸搜会超时的题目,其实题目的数据特地设计得让图稠密但起点和终点却不相连,所以直接搜索过去会超时. 只要判断下起点和终点能不能相连就行了 ...
- UVA - 208 Firetruck(消防车)(并查集+回溯)
题意:输入着火点n,求结点1到结点n的所有路径,按字典序输出,要求结点不能重复经过. 分析:用并查集事先判断结点1是否可以到达结点k,否则会超时.dfs即可. #pragma comment(link ...
- uva208
一道简单的路径打印,首先需要一次dfs判断能否从1到达目标点,否则可能会超时.还有一点就是那个格式需要注意下,每条路径前没有空格(看起来好像有3个空格)-. AC代码: #include<cst ...
随机推荐
- Content-type 的说明
如果要将查询结果导出到Excel,只需将页面的Context-Type修改一下就可以了: header( "Content-Type: application/vnd.ms-excel& ...
- windowsphone8.0 iso 下载地址
中文版http://download.microsoft.com/download/F/5/6/F56AD199-EF12-43C7-8551-C095394D3B32/fulltril30/iso/ ...
- 【转】C# 委托的介绍(delegate、Action、Func、predicate)
委托是一个类,它定义了方法的类型,使得可以将方法当作另一个方法的参数来进行传递.事件是一种特殊的委托. 1.委托的声明 (1). delegate delegate我们常用到的一种声明 Delegat ...
- hdu 4927 java求组合数(大数)
import java.util.Scanner; import java.math.BigInteger; public class Main { private static int [] a = ...
- RandomAcessFile、MappedByteBuffer和缓冲读/写文件
项目需要进行大文件的读写,调查测试的结果使我决定使用MappedByteBuffer及相关类进行文件的操作,效果不是一般的高. 网上参考资源很多,如下两篇非常不错: 1.花1K内存实现高效I/O的Ra ...
- X86调用约定
cdecl C语言默认的调用约定,从右往左压栈,由调用者负责清栈,所以参数个数可以不固定: stdcall windows默认调用方式,从右往左压栈,由被调用者负责栈操作. pasca ...
- JDK - Tomcat - JSP - Servlet 配置运行全攻略(转)
http://www.cnblogs.com/myqiao/archive/2005/08/29/225497.html 花了将近两个月的时间,从 JDK 开始一步一步摸索,历经千辛万苦,终于让第一个 ...
- Python编程中的反模式
Python是时下最热门的编程语言之一了.简洁而富有表达力的语法,两三行代码往往就能解决十来行C代码才能解决的问题:丰富的标准库和第三方库,大大节约了开发时间,使它成为那些对性能没有严苛要求的开发任务 ...
- Chapter12&Chapter13:程序实例
文本查询程序 要求:程序允许用户在一个给定文件中查询单词.查询结果是单词在文件中出现的次数及所在行的列表.如果一个单词在一行中出现多次,此行只列出一次. 对要求的分析: 1.读入文件,必须记住单词出现 ...
- Tcl之group arguments
1 doubel quotes This allows substitutions to occur within the quotations - or "interpolation&qu ...