伸展树概念

伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。

(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。

(02) 除了拥有二叉查找树的性质之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。

假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生,它是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。

相比于"二叉查找树"和"AVL树",学习伸展树时需要重点关注是"伸展树的旋转算法"。

伸展树实现

伸展树的节点包括的几个组成元素:

(01) key -- 是关键字,是用来对伸展树的节点进行排序的。

(02) left -- 是左孩子。

(03) right -- 是右孩子。

旋转算法

算法描述:rotate left/rotate right –> link left/link right –> assemble

(a):伸展树中存在"键值为key的节点"。 * 将"键值为key的节点"旋转为根节点。

(b):伸展树中不存在"键值为key的节点",并且key < tree->key。

b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。

b-2 "键值为key的节点"的前驱节点不存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。

(c):伸展树中不存在"键值为key的节点",并且key > tree->key。

c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。

c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。

树-伸展树(Splay Tree)的更多相关文章

  1. AVL树、splay树(伸展树)和红黑树比较

    AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实 ...

  2. HDU-3436 Queue-jumpers 树状数组 | Splay tree删除,移动

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3436 树状数组做法<猛戳> Splay tree的经典题目,有删除和移动操作.首先要离散化 ...

  3. [SinGuLaRiTy] SplayTree 伸展树

    [SinGuLaRiTy-1010]Copyrights (c) SinGuLaRiTy 2017. All Rights Reserved. Some Method Are Reprinted Fr ...

  4. 二叉树总结(五)伸展树、B-树和B+树

    一.伸展树 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作. 因为,它是一颗二叉排序树,所以,它拥有二叉查找树的性质:除此之外,伸展树还具有的一个特点 ...

  5. 二叉树、红黑树、伸展树、B树、B+树

    好多树啊,程序猿砍树记,吼吼. 许多程序要解决的关键问题是:快速定位特定排序项的能力. 第一类:散列 第二类:字符串查找 第三类:树算法 树算法可以在辅助存储器中存储大量的数据. 二叉树.红黑树和伸展 ...

  6. Splay(区间翻转)&树套树(Splay+线段树,90分)

    study from: https://tiger0132.blog.luogu.org/slay-notes P3369 [模板]普通平衡树 #include <cstdio> #inc ...

  7. [学习笔记] Splay Tree 从入门到放弃

    前几天由于出行计划没有更博QwQ (其实是因为调试死活调不出来了TAT我好菜啊) 伸展树 伸展树(英语:Splay Tree)是一种二叉查找树,它能在O(log n)内完成插入.查找和删除操作.它是由 ...

  8. 纸上谈兵:伸展树(splay tree)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...

  9. [转] Splay Tree(伸展树)

    好久没写过了,比赛的时候就调了一个小时,差点悲剧,重新复习一下,觉得这个写的很不错.转自:here Splay Tree(伸展树) 二叉查找树(Binary Search Tree)能够支持多种动态集 ...

随机推荐

  1. Eclipse 插件开发 —— 深入理解查找(Search)功能及其扩展点

    引言 查找功能是计算机语言开发环境 / 平台的一个非常重要的特性.Eclipse 也不例外,它提供了丰富的查找功能(用户可以输入正则表达式或任意字符串,指定查找范围和匹配选项等等),并且提供了简单易用 ...

  2. c++调用matlab生成的Dll动态连接库

    点击打开链接http://download.csdn.net/detail/nuptboyzhb/4228429 c++调用matlab生成的Dll动态连接库 实验平台:   matlab 7.0(R ...

  3. BZOJ 3533 sdoi 2014 向量集

    设(x,y)为Q的查询点,分类讨论如下:1.y>0:  最大化a*x+b*y,维护一个上凸壳三分即可 2.y<0:最大化a*x+b*y  维护一个下凸壳三分即可 我们考虑对时间建出一棵线段 ...

  4. C++常用语法

    unordered_map<int, Node*> mp; if (mp.find(key) == mp.end()) unordered_map<int, Node*>::i ...

  5. 97. Interleaving String

    题目: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given: ...

  6. 算法总结之欧拉函数&中国剩余定理

    算法总结之欧拉函数&中国剩余定理 1.欧拉函数 概念:在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)( ...

  7. R语言学习笔记:查看函数的R源代码

    getAnywhere 该函数可以返回一些函数的R源代码,如: getAnywhere(kmeans) 该函数具体用法,请参看官方说明. Retrieve an R Object, Including ...

  8. cmd启动tomcat

    1.安装jdk 2.安装tomcat 3.需要配置两个用户环境变量,仅仅配置系统变量没用. a)JAVA_HOME:D:\programing~tools\java~tools\JDK(tm)\jdk ...

  9. Flex 选项卡加载方式简介

    Flex中选项卡默认只加载选中的选项,所以在初始化的时候给其他的选项卡中的对象赋值或是其他操作,都会出现空对象错误. 解决办法:给选项卡设置属性 creationPolicy=”all” 如:< ...

  10. 去掉php框架CI默认url中的index.php

    CI默认的rewrite url中是类似这样的 例如你的CI根目录是在/CodeIgniter/下,你的下面的二级url就类似这样 http://localhost/CodeIgniter/index ...