题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423

  题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数。

  这道题的话,对于神犇来说,肯定是一眼看出状态转移方程的。而我这个蒟蒻,看了几篇博客之后才看懂。。。

  第一问模板lcs,大家肯定都会,就是设f[i][j]为A串跑到第i位,B串跑到第j为时的最长公共子序列长度,然后就有:

    f[i][j]=f[i-1][j-1]+1  (a[i]==b[j])

        =max(f[i-1][j],f[i][j-1])  (a[i]!=b[j])  (原谅我不会编辑公式)

  我就解释一下第二问的方程。先设g[i][j]为A串跑到第i位,B串跑到第j为时的最长公共子序列个数,方程就是这样:

    g[i][j]=g[i-1][j-1]

        +g[i-1][j]  (f[i][j]==f[i-1][j])

        +g[i][j-1]  (f[i][j]==f[i][j-1])

        (a[i]==b[j])

       =g[i-1][j]  (f[i][j]==f[i-1][j])

        +g[i][j-1]  (f[i][j]==f[i][j-1])

        -g[i-1][j-1]  (f[i][j]==f[i-1][j-1])

        (a[i]!=b[j])

  这里当a[i]和b[j]相同时,g[i-1][j],g[i-1][j-1],g[i][j-1]这三个的最长公共子序列不会重复,因为这里的g[i-1][j-1]实际上还要在末尾添加上a[i](或b[j]),因此这些lcs全都是以a[i],b[j]结尾的,而g[i-1][j]不包含以a[i]结尾的lcs,g[i][j-1]不包含以b[j]结尾的lcs,因此这三类lcs不会重复,可以直接相加。

  当a[i]与b[j]不同时,最后当f[i][j]==f[i-1][j-1]时要减去g[i-1][j-1]就是因为这时g[i-1][j-1]被分别包含在g[i-1][j]和g[i][j-1]中,算了两次,要把重复的减掉。

  于是就可以愉快地AC这道题了。

  还有,一定要用滚动数组,不然爆!空!间!

丑代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int mod=;
int f[][],g[][];
char a[],b[];
int main()
{
int i,j,n,m;
scanf("%s%s",a,b);
n=strlen(a)-; m=strlen(b)-;
for(i=;i<=m;i++)g[][i]=; g[][]=;
for(i=;i<=n;i++)
for(j=;j<=m;j++)
if(a[i-]==b[j-]){
f[i&][j]=f[i&^][j-]+;
g[i&][j]=(g[i&^][j-]+(f[i&^][j]==f[i&][j])*g[i&^][j]+(f[i&][j-]==f[i&][j])*g[i&][j-])%mod;
}
else{
if(f[i&^][j]>f[i&][j-])f[i&][j]=f[i&^][j];else f[i&][j]=f[i&][j-];
g[i&][j]=((f[i&^][j]==f[i&][j])*g[i&^][j]+(f[i&][j-]==f[i&][j])*g[i&][j-]-(f[i&][j]==f[i&^][j-])*g[i&^][j-]+mod)%mod;
}
printf("%d\n%d",f[n&][m],g[n&][m]);
}

【bzoj2423】最长公共子序列[HAOI2010](dp)的更多相关文章

  1. bzoj 2423: [HAOI2010]最长公共子序列【dp+计数】

    设f[i][j]为a序列前i个字符和b序列前j个字符的最长公共子序列,转移很好说就是f[i][j]=max(f[i-1][j],f[i][j-1],f[i-1][j-1]+(a[i]==b[j])) ...

  2. poj1458 求最长公共子序列 经典DP

    Common Subsequence Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45763   Accepted: 18 ...

  3. P1439 【模板】最长公共子序列(DP)

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  4. hdu 1159 Common Subsequence(最长公共子序列,DP)

    题意: 两个字符串,判断最长公共子序列的长度. 思路: 直接看代码,,注意边界处理 代码: char s1[505], s2[505]; int dp[505][505]; int main(){ w ...

  5. 洛谷 P1439 【模板】最长公共子序列(DP,LIS?)

    题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...

  6. 最长公共子序列(DP)

    Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列 X = { x1,x2,…,xm },则另一序列Z ={ z1,z2,…,zk },X 的子序列 ...

  7. NYOJ 36 最长公共子序列 (还是dp)

    这个好多算法书上都有,不仅限于<算法导论> 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 咱们就不拐弯抹角了,如题.须要你做的就是写一个程序,得出最长公 ...

  8. PKU 1458 Common Subsequence(最长公共子序列,dp,简单)

    题目 同:ZJU 1733,HDU 1159 #include <stdio.h> #include <string.h> #include <algorithm> ...

  9. 【noi 2.6_1808】最长公共子序列(DP)

    题意:给2个字符串求其最大公共子序列的长度.解法:这个和一般的状态定义有点不一样,f[i][j]表示 str 前i位和 str2 前j的最大公共子序列的长度,而不是选 str 的第i位和 str2 的 ...

随机推荐

  1. 二、Android应用的界面编程(七)ViewAnimator及其子类[ ViewSwitcher、ImageSwitcher、TextSwitcher、ViewFlipper ]

    ViewAnimator是一个基类,它继承了FrameLayout.因此它表现出FrameLayout的特征,可以将多个View组“叠”在一起. ViewAnimator可以在View切换时表现出动画 ...

  2. DataTable数据筛选

    DataView view = newDt.DefaultView;view.Sort = "Description asc,replyEnd desc";DataTable ta ...

  3. 集合遍历的时候删除List

    在Java中有时候我们会需要对List里面的符合某种业务的数据进行删除,但是如果不了解里面的机制就容易掉入“陷阱”导致遗漏或者程序异常.本文以代码例子的方式进行说明该问题. 1.采用索引下标遍历的方式 ...

  4. 《挑战程序设计竞赛》2.1 广度优先搜索 AOJ0558 POJ3669 AOJ0121

    AOJ0558 原文链接: AOJ0558 题意: 在H * W的地图上有N个奶酪工厂,分别生产硬度为1-N的奶酪.有一只吃货老鼠准备从老鼠洞出发吃遍每一个工厂的奶酪.老鼠有一个体力值,初始时为1,每 ...

  5. 自定义表单验证--jquery validator addMethod的使用

    原文地址:jquery validator addMethod 方法的使用作者:蜡笔小玄 jQuery.validate是一款非常不错的表单验证工具,简单易上手,而且能达到很好的体验效果,虽然说在项目 ...

  6. Architectural Styles and the Design of Network-based Software Architectures

    w Architectural Styles and the Design of Network-based Software Architectures  http://www.ics.uci.ed ...

  7. <2013 12 17> 专业技能

    Specialties: • Mechanical design modeling using Pro/ENGINEER and SolidWorks.• Robot control, path pl ...

  8. SpringBoot处理url中的参数的注解

    1.介绍几种如何处理url中的参数的注解 @PathVaribale  获取url中的数据 @RequestParam  获取请求参数的值 @GetMapping  组合注解,是 @RequestMa ...

  9. php安装pcntl扩展

    1.下载一个同样版本的php(我的是php5.6.27,我下的是php5.6.28) [root@CentOS6 lamp]# wget http://hk1.php.net/get/php-5.6. ...

  10. ThinkPHP的create方法的一系列操作

    1.数据操作状态 create方法的第二个参数可以指定数据的操作状态,默认是自动判断的(写入[Model:MODEL_INSERT或者1].更新[Model:MODEL_UPDATE或者2].也可以自 ...