【费马小定理】HDU4704-Sum

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define m 1000000007
using namespace std;
typedef long long ll;
const int MAXN=+;
ll n;
char str[MAXN]; void init()
{
n=;
int len=strlen(str);
for (int i=;i<len;i++)
n=(n*+str[i]-'')%(m-);
n--;
} ll pow()
{
ll temp=n,k=,ret=;
while (temp)
{
if (temp&) ret=ret*k%m;
temp>>=;
k=(k*k)%m;
}
return ret;
} int main()
{
while (~scanf("%s",str))
{
init();
cout<<pow()<<endl;
}
return ;
}
【费马小定理】HDU4704-Sum的更多相关文章
- HDU 4704 Sum( 费马小定理 + 快速幂 )
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- hdu4704之费马小定理+整数快速幂
Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Subm ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- HDU 4704 Sum (隔板原理 + 费马小定理)
Sum Time Limit : 2000/1000ms (Java/Other) Memory Limit : 131072/131072K (Java/Other) Total Submiss ...
- hdu 4704 Sum (整数和分解+高速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7). 当中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- HDU4704+费马小定理
费马小定理题意:求s1+s2+s3+...+sn;si表示n划分i个数的n的划分的个数,如n=4,则s1=1,s2=3 利用隔板定理可知,就是求(2^n-1)%mod-----Y 现在已知 ...
- hdu 4704 Sum 费马小定理
题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p) 然后可以推出来a^k % p = a^(k%(p-1) ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
随机推荐
- session超时设置+超时页面跳转
session超时设置,方法有三种: (1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(600);参数600单位是秒,即在没有10分钟活动后,sessio ...
- codevs1063 合并果子 优先队列(小根堆)
题目传送门 这道题很容易想到优先把两堆重量最小的合并比较优 然后乱搞一下就可以啦 #include<cstdio> #include<cstring> #include< ...
- 【BZOJ】1770 [Usaco2009 Nov]lights 燈
[算法]高斯消元-异或方程组 [题解]良心简中题意 首先开关顺序没有意义. 然后就是每个点选或不选使得最后得到全部灯开启. 也就是我们需要一种确定的方案,这种方案使每盏灯都是开启的. 异或中1可以完美 ...
- 【洛谷 P1251】 餐巾计划问题 (费用流)
题目链接 我做的网络流24题里的第一题.. 想是不可能想到的,只能看题解. 首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早 ...
- magento目录了解
对magento目录的了解:
- bzoj 1878 SDOI2009树状数组 离线操作
本来想写2120的,结果想起来了这个 我们先对于询问左端点排序,用树状数组存区间字母个数,对于每种字母, 第一次出现的位置记录为1,剩下的记录为0,然后记录下,每种颜色 后面第一个和他相同颜色的位置 ...
- C++ 头文件保护符
头文件保护符有什么作用? 在C++中我们写头文件时经常需要#include来包含其他头文件.头文件定义的实体经常使用其他头文件的内容,有时候会出现一个头文件被多次包含进同一源文件. 例如:一个头文件中 ...
- Security+考试通过心得
Security+ Security+ 认证是一种中立第三方认证,其发证机构为美国计算机行业协会CompTIA:是和CISSP.CISA等共同包含在内的国际IT业热门认证之一,和CISSP偏重信息安全 ...
- Linux中短横线(-)小记
在Linux中短横线(-)可以表示输出流,具体用法如下. 搭配cat cat - 如果指定cat的文件为-,表示从标准输入读取(和直接使用cat,好像没什么区别) 搭配| echo 123 | cat ...
- MySQL 查询语句练习2
创建表 /* Navicat MySQL Data Transfer Source Server : localhost_3306 Source Server Version : 50719 Sour ...