P4462 [CQOI2018]异或序列
题目描述
已知一个长度为n的整数数列 a1,a2,...,ana_1,a_2,...,a_na1,a2,...,an ,给定查询参数l、r,问在 al,al+1,...,ara_l,a_{l+1},...,a_ral,al+1,...,ar 区间内,有多少子序列满足异或和等于k。也就是说,对于所有的x,y (I ≤ x ≤ y ≤ r),能够满足 ax⨁ax+1⨁...⨁ay=ka_x \bigoplus a_{x+1} \bigoplus ... \bigoplus a_y = kax⨁ax+1⨁...⨁ay=k 的x,y有多少组。
输入输出格式
输入格式:
输入文件第一行,为3个整数n,m,k。
第二行为空格分开的n个整数,即 a1,a2,..ana_1,a_2,..a_na1,a2,..an 。
接下来m行,每行两个整数 lj,rjl_j,r_jlj,rj ,表示一次查询。
输出格式:
输出文件共m行,对应每个查询的计算结果。
输入输出样例
4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4
4
2
1
2
1
说明
对于30%的数据, 1≤n,m≤10001 ≤ n, m ≤ 10001≤n,m≤1000
对于100%的数据, 1≤n,m≤105,0≤k,ai≤105,1≤lj≤rj≤n
Solution:
这题面有毒,我不改了,题意就是$10^5$个数,$10^5$次查询,每次询问区间$[l,r]$中的子序列异或和为$k$的值的个数。
首先,很容易想到异或的性质$a\;xor\;b\;xor\;b=a$,所以用前缀异或和$a[i]$表示前$i$个数的异或和,那么子序列$p_x\;xor\;p_{x+1}…\;xor\;p_{y-1}\;xor\;p_{y}=a_y\;xor\;a_{x-1}$。
若$a_{x-1}\;xor\;a_y=k$,则$a_{x-1}=a_y\;xor\;k$,于是本题预处理出前缀异或和,将每个区间的下界$l-1$(因为$[l,r]$的异或和为$a[r]\;xor\;a[l-1]$),加减一个数等同于修改并统计当前区间$a_p\;xor\;k$出现的个数,于是本题就成了一道莫队模板题——查询区间中某个数的个数。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=;
int n,m,k,a[N],pos[N],ans[N],num[N*],tot;
struct data{
int l,r,id;
}t[N];
il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il bool cmp(data a,data b){return pos[a.l]==pos[b.l]?a.r<b.r:a.l<b.l;}
il void add(int p){tot+=num[k^a[p]],++num[a[p]];}
il void del(int p){--num[a[p]],tot-=num[k^a[p]];}
int main()
{
n=gi(),m=gi(),k=gi();
int s=int(sqrt(n));
for(int i=;i<=n;i++)pos[i]=(i-)/s+,a[i]=a[i-]^gi();
for(int i=;i<=m;i++)t[i].l=gi()-,t[i].r=gi(),t[i].id=i;
sort(t+,t+m+,cmp);
for(int i=,l=,r=;i<=m;i++){
while(t[i].l>l)del(l++);
while(t[i].l<l)add(--l);
while(t[i].r<r)del(r--);
while(t[i].r>r)add(++r);
ans[t[i].id]=tot;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}
P4462 [CQOI2018]异或序列的更多相关文章
- 【luogu P4462 [CQOI2018]异或序列】 题解
题目链接:https://www.luogu.org/problemnew/show/P4462 ax+ax-1+...+ay = cntx+cnty 这样把一段序列变成两段相加跑莫队. #inclu ...
- 并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列
题目大意 给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\ ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- Luogu P4462 [CQOI2018]异或序列
一道稍微要点脑子的莫队题,原来省选也会搬CF原题 首先利用\(xor\)的性质,我们可以搞一个异或前缀和的东西 每一次插入一个数,考虑它和之前已经加入的数能产生多少贡献 记一下之前的异或总值,然后还是 ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
打广告->[这里](https://www.cnblogs.com/bztMinamoto/p/9538115.html) 我蠢了…… 如果$a_{l} xor ...a_{r}=k$,那么只要 ...
- luogu P4462 [CQOI2018]异或序列 |莫队
题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...
- P4462 [CQOI2018]异或序列 莫队
题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
随机推荐
- vue项目全局使用axios
共有三种方法: 1.结合 vue-axios使用 首先在主入口文件main.js中引用 import axios from 'axios' import VueAxios from 'vue-axio ...
- filter-policy和AS-PATH-FILTER过滤BGP路由条目
Filter-policy过滤BGP路由条目 一:根据项目需求搭建好拓扑图如下: 二:配置 1:对项目图做理论分析,首先RT1和RT2属于EBGP(不同自治系统之间的直连路由),而RT2和RT3属于I ...
- python应用:TXT文件的读写
python读写TXT文件不需要导入包 python中常用的读写方式: 文件打开模式 描述 r 以只读模式打开文件,并将文件指针指向文件头:如果文件不存在会报错 w 以只写模式打开文件,并将文件指针指 ...
- JAVA判断时间是否在时间区间内
package com.liying.tiger.test; import java.text.ParseException; import java.text.SimpleDateFormat; i ...
- Git更改远程仓库地址
最近在开发一个公司内部的公共组件库.老大整理了git仓库里的一些项目,其中就包括这个项目. 项目git地址变了,于是我本地的代码提交成功后push失败. 查看远程地址 git remote -v 更改 ...
- HDU暑假多校第三场H.Monster Hunter
一.题意 给定一个树状地图,每个树节点上有一只怪物,打死一只怪物的过程中将会消耗A点HP,打死之后将会获得B点HP.因为树状结构,所以每只怪物必须先打死父节点的怪兽之后在打死子节点的怪物.现在,给定每 ...
- BLE(Bluetooth Low Energy)---first part
原文地址:https://developer.android.com/guide/topics/connectivity/bluetooth-le.html#terms (本人是技术宅,翻译时候,只要 ...
- LeetCode:24. Swap Nodes in Pairs(Medium)
1. 原题链接 https://leetcode.com/problems/swap-nodes-in-pairs/description/ 2. 题目要求 给定一个链表,交换相邻的两个结点.已经交换 ...
- MySQL数据库性能优化专题
摘录: 书:<MySQL性能调优与架构设计> 一个系列: (按顺序排一下) MySQL 数据库性能优化之缓存参数优化 http://isky000.com/database/mysql-p ...
- MQTT 开源代理mosquitto的网络层封装相当sucks
最近学习MQTT协议,选择了当前比较流行的MQTT Broker “mosquitto”,但是在阅读代码过程中发现其网络底层库封装的相当差劲. 对于MQTT协议的变长头长度的读取上,基本上采取每次一个 ...