传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1045

Fire Net

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14670    Accepted Submission(s): 8861

Problem Description
Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, each representing a street or a piece of wall.

A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.

Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.

 
Input
The input file contains one or more map descriptions, followed by a line containing the number 0 that signals the end of the file. Each map description begins with a line containing a positive integer n that is the size of the city; n will be at most 4. The next n lines each describe one row of the map, with a '.' indicating an open space and an uppercase 'X' indicating a wall. There are no spaces in the input file.
 
Output
For each test case, output one line containing the maximum number of blockhouses that can be placed in the city in a legal configuration.
 
Sample Input
4
.X..
....
XX..
....
2
XX
.X
3
.X.
X.X
.X.
3
...
.XX
.XX
4
....
....
....
....
0
 
Sample Output
5
1
5
2
4
 
Source
 
题目意思:

就是给你一个地图,地图上有一些墙,向地图内放炮台,不要让两个炮台能互相射击到对方,

当然中间有墙就可以阻隔他们。求最多能放多少炮台。

分析:

如果放炮台,在该点设置一个炮台标记,

判断某一点是否可以放炮台,就是从该点向四个方向找,碰到墙停止,碰到别的炮台就返回0,表示该点不能放炮台。

code:

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
using namespace std;
char G[][];
int n,sum;
bool check(int x,int y)
{
if(G[x][y]=='X')//该点是墙
return false;
for(int i=x;i<n;i++)//下
{
if(G[i][y]=='X')
break;
if(G[i][y]=='S')
return false;
}
for(int i=x;i>=;i--)//上
{
if(G[i][y]=='X')
break;
if(G[i][y]=='S')
return false;
}
for(int j=y;j<n;j++)//右
{
if(G[x][j]=='X')
break;
if(G[x][j]=='S')
return false;
}
for(int j=y;j>=;j--)//左
{
if(G[x][j]=='X')
break;
if(G[x][j]=='S')
return false;
}
return true;
} void dfs(int x,int y,int num)
{
if(x==n)
{
sum=max(sum,num);
return ;
}
for(int j=y;j<n;j++)
{
if(check(x,j))
{
G[x][j]='S';
dfs(x,j,num+);
G[x][j]='.';
}
}
dfs(x+,,num);
}
int main()
{
while(cin>>n,n)
{
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
cin>>G[i][j];
}
}
sum=;
dfs(,,);
cout<<sum<<endl;
}
return ;
}

HDU 1045 Fire Net(dfs,跟8皇后问题很相似)的更多相关文章

  1. HDOJ(HDU).1045 Fire Net (DFS)

    HDOJ(HDU).1045 Fire Net [从零开始DFS(7)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HD ...

  2. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  3. HDU 1045 Fire Net(DFS)

    Fire Net Problem Description Suppose that we have a square city with straight streets. A map of a ci ...

  4. hdu 1045 Fire Net(最小覆盖点+构图(缩点))

    http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit:1000MS     Memory Limit:32768KB   ...

  5. HDU 1045(Fire Net)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定大小的棋盘中部分格子存在可以阻止互相攻击的墙,问棋盘中可以放置最多多少个可以横纵攻击炮塔. [题目分析] 这题本来在搜索专题 ...

  6. HDU 1045——Fire Net——————【最大匹配、构图、邻接矩阵做法】

    Fire Net Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  7. HDU 1045 Fire Net 【连通块的压缩 二分图匹配】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)    ...

  8. HDU 1045 Fire Net 状压暴力

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1045 Fire Net Time Limit: 2000/1000 MS (Java/Others)  ...

  9. HDU 1045 Fire Net 二分图建图

    HDU 1045 题意: 在一个n*n地图中,有许多可以挡住子弹的墙,问最多可以放几个炮台,使得炮台不会相互损害.炮台会向四面发射子弹. 思路: 把行列分开做,先处理行,把同一行中相互联通的点缩成一个 ...

随机推荐

  1. pat04-树4. Root of AVL Tree (25)

    04-树4. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  2. 【Ubuntu】设置静态ip地址

    一.Ubuntu16.04设置静态IP1.获取网卡的名字   ip route show 2.获取网卡的名字 vim /etc/network/interfaces auto ens33 iface ...

  3. php 项目中自定义日志方法

    在现在项目中之前没有定义日志的方法,每次调试起来很麻烦,经常不能输出参数,只能用写日志的方法,一直用file_put_contents很烦躁,于是用了一点时间,写了这样一个方法: <?php / ...

  4. [转]How to use IHttpContextAccessor in static class to set cookies

    本文转自:http://stackoverflow.com/questions/37329354/how-to-use-ihttpcontextaccessor-in-static-class-to- ...

  5. asp.net MVC3之AJAX实现(json)

    asp.net MVC3之AJAX实现(json)         分类:             Asp.net MVC              2011-08-10 13:55     2272 ...

  6. (转载)C#获取当前应用程序所在路径及环境变量

    一.获取当前文件的路径 string str1=Process.GetCurrentProcess().MainModule.FileName;//可获得当前执行的exe的文件名. string st ...

  7. node.js获取cookie

    node.js 获取cookie var Cookies ={}; if (req.headers.cookie != null) { req.headers.cookie.split(';').fo ...

  8. 当Activity出现Exception时是如何处理的?

    1.ActivityThread 2.PerformStop 在这里会调用mWindow.closeAllPanels(),从而关闭OptionMenu, ContextMenu.如果自己通过Wind ...

  9. hdu 1087 最大递增和

    思路和LIS差不多,dp[i]为i结尾最大值 #include <iostream> #include <string> #include <cstring> #i ...

  10. python 之闭包

    原文 函数作为返回值 高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回. 我们来实现一个可变参数的求和.通常情况下,求和的函数是这样定义的: def calc_sum(*args): a ...