题目大意:

求将$100!$ 拆成$a*b$的方案数,其中$a<=b$并且它们的约数个数一样多。

思路:

先将$100!$质因数分解, 结果如图:

首先想到一个暴力DP, dp[i][j][k]表示考虑完前i个质数, 目前a有j个约数,b有k个约数的方案数。 用map保存状态。

答案就是sum(dp[25][j][j]).

但是状态数会很多(大概有1e8个状态),所以考虑 中途相遇法。 对前3个质数做一次DP, 然后对后面22个质数做一次DP。

最后答案就是 sum (dp1[3][i1][j1] * dp2[22][i2][j2])   条件是 i1 * i2 = j1 * j2.  即  i1 / j1 =  j2 / i2 .

一个优化是只保存 j和k互质的状态。 然后 最后 答案的时候 枚举 i1,j1,  在 dp2中 查找 j2 / i2 = i1 / j1的点 。

因为a<=b,所以最后答案还需要除以2.

代码:

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#include <cstring>
#include <map>
#include <queue>
using namespace std; typedef long long ll;
#define N 10000000
#define M 1100
typedef pair<int,int> pii; bool flag[N];
int p[N],phi[N]; struct node
{
ll x,y;
bool operator < (const node &t)const
{
return y*t.x<x*t.y;
}
node (ll _x = , ll _y = ){x = _x; y = _y;}
}; map<node, ll> mp; ll Gcd(ll x, ll y)
{
ll tmp;
while (y)
{
tmp = x % y;
x = y, y = tmp;
}
return x;
} void Get_Primes(int lim)
{
phi[]=;
for (int i=;i<=lim;i++)
{
if (!flag[i]) p[++p[]]=i,phi[i]=i-;
for (int j=;j<=p[] && i*p[j]<=lim;j++)
{
flag[i*p[j]]=true;
if (i%p[j]==)
{
phi[i*p[j]]=phi[i]*p[j];
break;
}
else phi[i*p[j]]=phi[i]*(p[j]-);
}
}
} map<pair<ll,ll>, ll> f[], g[];
int cnt[]; int main()
{
freopen("in.in","r",stdin);
freopen("out.out","w",stdout); int n = ;
Get_Primes(n);
for (int i = ; i <= p[]; ++i)
{
int x = p[i];
while (x <= n) cnt[i] += n / x, x *= p[i];
} f[][make_pair(,)] = ;
for (int i = ; i <= ; ++i)
{
for (map<pair<ll,ll>, ll>::iterator it = f[i - ].begin(); it != f[i - ].end(); it++)
{
ll k1 = (*it).first.first, k2 = (*it).first.second;
for (int j = ; j <= cnt[i]; ++j)
{
ll kx = k1 * (j + ), ky = k2 * (cnt[i] - j + ) , d = Gcd(kx, ky);
f[i][make_pair(kx / d, ky / d)] += (*it).second;
}
}
}
g[][make_pair(,)] = ;
for (int i = ; i <= p[] - ; ++i)
{
for (map<pair<ll,ll>, ll>::iterator it = g[i - ].begin(); it != g[i - ].end(); it++)
{
ll k1 = (*it).first.first, k2 = (*it).first.second;
for (int j = ; j <= cnt[i + ]; ++j)
{
ll kx = k1 * (j + ), ky = k2 * (cnt[i + ] - j + ), d = Gcd(kx, ky);
g[i][make_pair(kx / d, ky / d)] += (*it).second;
}
}
}
for (map<pair<ll,ll>, ll>::iterator it = g[p[] - ].begin(); it != g[p[] - ].end(); it++)
{
ll x = (*it).first.first, y = (*it).first.second;
mp[node(x, y)] += (*it).second;
} ll res = ;
for (map<pair<ll,ll>, ll>::iterator it = f[].begin(); it != f[].end(); it++)
{
ll x = (*it).first.first, y = (*it).first.second;
res += (*it).second * mp[node(y, x)];
}
cout << res / << endl;
return ;
}

答案:543194779059

Split Divisibilities (Project Euler 598)的更多相关文章

  1. Python练习题 049:Project Euler 022:姓名分值

    本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...

  2. Python练习题 041:Project Euler 013:求和、取前10位数值

    本题来自 Project Euler 第13题:https://projecteuler.net/problem=13 # Project Euler: Problem 13: Large sum # ...

  3. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  4. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  5. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  6. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  7. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  8. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  9. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

随机推荐

  1. redis_安装及使用

    一.文档资料       1.官方网站:http://redis.io/       2.官方文档:http://redis.io/documentation       3.常用命令文档:http: ...

  2. Git -- 自己项目关联新建的git

  3. 《linux 内核全然剖析》 chapter 4 80x86 保护模式极其编程

    80x86 保护模式极其编程       首先我不得不说.看这章真的非常纠结...看了半天.不知道这个东西能干嘛.我感觉唯一有点用的就是对于内存映射的理解...我假设不在底层给80x86写汇编的话.我 ...

  4. scrapy-splash抓取动态数据例子十六

    一.介绍 本例子用scrapy-splash爬取梅花网(http://www.meihua.info/a/list/today)的资讯信息,输入给定关键字抓取微信资讯信息. 给定关键字:数字:融合:电 ...

  5. 实现一个JDK代理demo

    JDK代理,非常简单地实现了动态代理(首先是实现对应的InvocationHandler:然后,以接口来为被调用目标构建代理对象,代理对象简介运行调用目标,并提供额外逻辑插入) 缺点:它是只能以接口为 ...

  6. 【前端自动化构建 grunt、gulp、webpack】

    参考资料: 用自动化构建工具增强你的工作流程!:http://www.gulpjs.com.cn/ gulp详细入门教程:http://www.ydcss.com/ JavaScript构建(编绎)系 ...

  7. Android使用sqlliteOpenhelper更改数据库的存储路径放到SD卡上

    假设使用默认的系统管理,默认放在包以下.比較省心.并且在卸载app后不会造成数据残留.可是这样也有一个问题.比方我做一个背单词的软件,那么当用户卸载掉这个app时,他辛辛苦苦下载的单词库也没了... ...

  8. IStorage

    IStorage 接口支持结构化存储对象的创建和管理. 结构化存储允许分层存储在单个文件的信息,和通常被称为“文件系统内文件”. 元素的结构化存储对象存储和小溪. 存储类似于目录,和流类似于文件. 在 ...

  9. 【Java】Java_15 打印九九乘法表

    使用For循环嵌套即可打印九九乘法表 以下是具体代码: /** * 打印九九乘法表 */ package com.oliver.test; public class TestMultiplicatio ...

  10. C# socket编程 使用fleck轻松实现对话 https://github.com/statianzo/Fleck

    class Program { static void Main(string[] args) { FleckLog.Level = LogLevel.Debug; var allSockets = ...