树上游戏..二合一?

题目描述

曾经发明了零件组装机的发明家 SHTSC 又公开了他的新发明:聚变反应炉——一种可以产生大量清洁能量的神秘装置。

众所周知,利用核聚变产生的能量有两个难点:一是控制核聚变反应的反应强度,二是使用较少的能量激发聚变反应。而 SHTSC 已经完美解决了第一个问题。一个聚变反应炉由若干个相连的聚变块组成,为了能够使得聚变反应可控,SHTSC 保证任意两个聚能块都可以通过相互之间的链接到达,并且没有一个聚能块可以不重复经过一个链接回到它自己。

但是第二个问题 SHTSC 还没有完全解决。在他设计的聚变反应炉当中,每个聚变块都需要一定的初始能量 \(d_i\) 来进行激发,不过 SHTSC 不需要手动激发所有聚变块,这是因为一旦一个聚变块被激发,则会向与其直接相连的所有还未被激发的聚变块传送 \(c_i\) 个单位的能量。这样后被触发的聚变块可以以更低的初始能量来激发,甚至可能不需要额外的外界能量就可自行激发,从而降低了总激发能量的消耗。现在给出了一个聚变反应炉,求至少要多少能量才能激发所有聚变块。

输入输出格式

输入格式:

第一行一个整数 \(n\),表示共有 \(n\) 个聚能块,由 \(1\) 至 \(n\) 编号。

第二行 \(n\) 个整数,依次表示 \(d_i\)​。

第三行 \(n\) 个整数,依次表示 \(c_i\)​。

以下 \(n-1\) 行每行两个整数 \(u,v\),表示编号为 \(u\) 和 \(v\) 的聚能块是相连的。

输出格式:

一行一个整数,表示至少需要多少个单位的能量才能激发所有聚变块。

输入输出样例

输入样例:

5
1 1 1 1 1
1 1 1 1 1
1 2
2 3
3 4
4 5

样例输出:

1

样例解释:

只需要触发任意一个聚变块即可激活整个聚变反应装置。

数据范围与约定

Case # \(\max\{c_i\}\) \(n\) 附加限制
1 \(=1\) \(\leq 10\) \(c_i = 1\)
2 \(=1\) \(\leq 100\) \(c_i = 1\)
3 \(=1\) \(\leq 200\) \(c_i = 1\)
4 \(=0\) \(\leq 10\) -
5 \(=1\) \(\leq 200\) \(c_i = 1\)
6 \(=1\) \(\leq 200\) -
7 \(=1\) \(\leq 100000\) \(c_i = 1\)
8 \(=0\) \(\leq 100000\) -
9 \(=1\) \(\leq 100000\) -
10 \(=1\) \(\leq 100000\) -
11 \(\leq 5\) \(\leq 20\) -
12 \(\leq 5\) \(\leq 20\) \(c_i\) 均相等
13 \(\leq 5\) \(\leq 200\) -
14 \(\leq 5\) \(\leq 200\) \(c_i\) 均相等
15 \(\leq 5\) \(\leq 200\) -
16 \(\leq 5\) \(\leq 200\) -
17 \(\leq 5\) \(\leq 2000\) \(c_i\) 均相等
18 \(\leq 5\) \(\leq 2000\) -
19 \(\leq 5\) \(\leq 2000\) -
20 \(\leq 5\) \(\leq 2000\) -

题解:

前面50分是个贪心。只需要先激发所有的 \(1\) 再激发所有的 \(0\) 即可。

此时考虑 \(1\) 之间会不会互相影响。因为相邻的 \(1\) 所造成的影响只是先后顺序上的,早晚都会减掉的,只是位置不同而已。

后面50分需要高阶树形dp,实则是个背包。用 \(f[i][j]\) 表示 \(i\) 号点在已接受儿子们贡献的 \(j\) 点能量后的最小花费,要把 \(j\) 当成背包那一维。

并且有可能出现 \(j>d_i\) 的情况,但是这是不合法的。因此我们也需要控制,当接收的能量超过 \(d_i\) 时要按 \(d_i\) 算。

此外,对于每个儿子做背包的时候,如果不接受它贡献的能量,则可以自己贡献能量给它。所以dp转移方程并不像以前的背包那样,而是要计算能量下传可能带来的更小代价。

因此我们做到一个儿子 \(v\) 的时候,先求出给它下传能量后的最小代价 \(m=\min\{f[v][j]-\min(c_i,d_v-j)\}\),然后dp的时候再利用这个值就可以了。

因此转移方程为(正在转移儿子 \(v\))

\[f[i][j]=\left\{\begin{matrix}
f[i][0]+m&j=0,\\\
\min(f[i][j-c_v]-c_v+F[v],f[i][j]+m)&k\le j\le d_i\\\
\min_{0\le k\le c_v}\{f[i][d_i-k]-k+F[v]\}&j=d_i
\end{matrix}\right.
\]

其中 \(F[v]=\min_{0}^{d[v]}\{f[v][i]\}\)。

加 \(F[v]\) 的是从儿子获取能量,涉及 \(m\) 的是自己下传能量。

不过从儿子获取的能量最多为 \(nc_i\) ,为10000,因此数组只用开 10000 即可,注意边界问题。

Code:

#include<cstdio>
#include<cstring>
int Min(int x,int y){return x<y?x:y;}
struct edge
{
int n,nxt;
edge(int n,int nxt)
{
this->n=n;
this->nxt=nxt;
}
edge(){}
}e[200100];
int head[100100],ecnt=-1;
void add(int from,int to)
{
e[++ecnt]=edge(to,head[from]);
head[from]=ecnt;
e[++ecnt]=edge(from,head[to]);
head[to]=ecnt;
}
int d[100100],c[100100];
int F[2010];
void dfs(int x,int from)
{
int f[10010];
memset(f,0x3f,sizeof(f));
f[x][0]=d[x];
for(int i=head[x];~i;i=e[i].nxt)
if(e[i].n!=from)
{
dfs(e[i].n,x);
int k=c[e[i].n],tmp=0x3fffffff,t=F[e[i].n]; for(int j=0;j<=10000;++j)
{
f[x][j]+=t;
tmp=Min(tmp,f[e[i].n][j]-Min(c[x],d[e[i].n]-j));
} //对于每个物品 拿或不拿都有不同的贡献 需要注意 if(d[x]<=10000)
{
f[x][d[x]]-=t-tmp;
for(int j=d[x];j>=d[x]-k;--j)
f[x][d[x]]=Min(f[x][d[x]],f[x][j]-(d[x]-j));
} for(int j=Min(d[x]-1,10000);j>=k;--j)
f[x][j]=Min(f[x][j]-t+tmp,f[x][j-k]-k); if(k)
{
f[x][0]-=F[e[i].n];//撤销统一修改
f[x][0]+=tmp;
} }
for(int i=0;i<=10000;++i)
if(f[x][i]<F[x])
F[x]=f[x][i];
}
int main()
{
memset(f,0x3f,sizeof(f));
memset(F,0x3f,sizeof(F));
memset(head,-1,sizeof(head));
int n,u,v;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&d[i]);
for(int i=1;i<=n;++i)
scanf("%d",&c[i]);
for(int i=1;i<n;++i)
{
scanf("%d%d",&u,&v);
add(u,v);
}
if(n>2000)//数据分治
{
for(int i=1;i<=n;++i)
if(c[i])
for(int j=head[i];~j;j=e[j].nxt)
if(e[j].n>i||!c[e[j].n])
--d[e[j].n];
int sum=0;
for(int i=1;i<=n;++i)
sum+=d[i]<0?0:d[i];
printf("%d\n",sum);
return 0;
}
dfs(1,1);
printf("%d\n",F[1]);
return 0;
}

洛谷 P4269 / loj 2041 [SHOI2015] 聚变反应炉 题解【贪心】【DP】的更多相关文章

  1. 洛谷 P4774 / loj 2721 [NOI2018] 屠龙勇士 题解【同余】【exgcd】【CRT】

    推导过程存在漏洞+exCRT板子没打熟于是期望得分÷实际得分=∞? 题目描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 \(1\sim n​\) 顺序杀掉 \(n​\ ...

  2. 洛谷 P3239 / loj 2112 [HNOI2015] 亚瑟王 题解【期望】【DP】

    ???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚 ...

  3. 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】

    看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...

  4. 洛谷【P2458】[SDOI2006]保安站岗 题解 树上DP

    题目描述 五一来临,某地下超市为了便于疏通和指挥密集的人员和车辆,以免造成超市内的混乱和拥挤,准备临时从外单位调用部分保安来维持交通秩序. 已知整个地下超市的所有通道呈一棵树的形状:某些通道之间可以互 ...

  5. 【洛谷5008】逛庭院(Tarjan,贪心)

    [洛谷5008]逛庭院(Tarjan,贪心) 题面 洛谷 题解 如果图是一个\(DAG\),我们可以任意选择若干个不是入度为\(0\)的点,然后把它们按照拓扑序倒序删掉,不难证明这样一定是合法的. 现 ...

  6. 洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心)

    洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/132 ...

  7. [Noi2016]区间 BZOJ4653 洛谷P1712 Loj#2086

    额... 首先,看到这道题,第一想法就是二分答案+线段树... 兴高采烈的认为我一定能AC,之后发现n是500000... nlog^2=80%,亲测可过... 由于答案是求满足题意的最大长度-最小长 ...

  8. BZOJ5291/洛谷P4458/LOJ#2512 [Bjoi2018]链上二次求和 线段树

    原文链接http://www.cnblogs.com/zhouzhendong/p/9031130.html 题目传送门 - LOJ#2512 题目传送门 - 洛谷P4458 题目传送门 - BZOJ ...

  9. 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)

    题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...

随机推荐

  1. 微信内置浏览器中的cookie很诡异呀

    微信内置浏览器中的cookie很诡异呀 这是设置和删除COOKIE的代码 function set_cookie($var ,$value = '' ,$expire = 0){ $path = '/ ...

  2. fiddler抓包时显示Tunnel to......443

    打开手机浏览器,输入http://192.168.0.65:8888/FiddlerRoot.cer

  3. 数据库 MySQL 之 数据操作

    数据库 MySQL 之 数据操作 一.MySQL数据类型介绍 MySQL支持多种类型,大致可以分为四类:数值.字符串类型.日期/时间和其他类型. ①二进制类型 bit[(M)] 二进制位(101001 ...

  4. SpringMVC——<mvc:annotation-driven/>

    会自动注 册RequestMappingHandlerMapping .RequestMappingHandlerAdapter 与 ExceptionHandlerExceptionResolver ...

  5. Codeforces 427E Police Patrol

    找中间的数,然后从两头取. #include<stdio.h> ; int pos[MAX]; int main() { int n,m,tmp; int i; int pol; long ...

  6. C#使用var定义变量时的四个特点

    使用var定义变量时有以下四个特点: 1. 必须在定义时初始化.也就是必须是var s = “abcd”形式: 2. 一但初始化完成,就不能再给变量赋与初始化值类型不同的值了. 3.   var要求是 ...

  7. bootstrap实现菜单定位

    <!DOCTYPE html><html lang="zh-cn"><head><meta charset="utf-8&quo ...

  8. Python基础入门-实现猜数字小游戏

    今天呢,我们来通过前面学过的一些知识点来完成一个猜数字大小的游戏程序设计.那么呢,一般人写代码直接上来就干,没有分析,这样的做法是没有产出的,除非你是大牛,今天呢,我会把我学习编程的思路分享给大家,我 ...

  9. Eclipse下Android的NDK开发环境配置

    编辑2016年7月26日——增加了下载网址,修改了一些错误. 摸索了一周,走了很多弯路,磕磕绊绊,总算是弄好了NDK的开发环境,在这里总结一下吧. 一.Android NDK开发环境 首先下载安装JR ...

  10. 编写高质量代码改善C#程序的157个建议——建议17:多数情况下使用foreach进行循环遍历

    建议17:多数情况下使用foreach进行循环遍历 由于本建议涉及集合的遍历,所以在开始讲解本建议之前,我们不妨来设想一下如何对结合进行遍历.假设存在一个数组,其遍历模式可以采用依据索引来进行遍历的方 ...