【COGS 2434】 暗之链锁 树上差分+LCA
差分就是把一个值拆成许多差的和如 1 2 4 6 9 那么 把这个东西拆成 1 1 2 2 3 就是了,当然也可以理解为对一个问题分解为多个子问题并对其进行操作来得到原问题的答案。
树上差分就更玄妙了,它既可以把原问题拆成他到根节点的所有点,也可以拆成子树,拆成子树的话修改一个点影响的是他到根的路径上所有点,根据这个我们可以再加上LCA来解决许多问题。
这道题:I. 我们可以看出我们可以把它转化成一棵有根树,那么两部分一定是一个子树和其他 II. 那些虚边,都是砍断实边之后的藕断丝连,至于如何计算在这个实边上附上的虚边我们只需把那些虚路径乎到实路径上,就是路径修改.
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#define MAXN 100010
using namespace std;
inline int read()
{
int sum=;
char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')
{
sum=(sum<<)+(sum<<)+ch-'';
ch=getchar();
}
return sum;
}
int w[MAXN],n,m;
int f[MAXN];
struct VIA
{
int to,next;
}c[MAXN<<],q[MAXN<<];
int head[MAXN],t,Head[MAXN],T;
bool v[MAXN];
inline void add(int x,int y)
{
c[++t].to=y;
c[t].next=head[x];
head[x]=t;
}
inline void Add(int x,int y)
{
q[++T].to=y;
q[T].next=Head[x];
Head[x]=T;
}
inline void Init()
{
n=read(),m=read();
for(int i=,x,y;i<n;++i)x=read(),y=read(),add(x,y),add(y,x);
for(int i=,x,y;i<=m;++i)
{
x=read(),y=read();
if(x==y)continue;
Add(x,y),++w[x],++w[y],Add(y,x);
}
}
inline int find(int x)
{
return x==f[x]?x:(f[x]=find(f[x]));
}
void LCA(int x,int p)
{
f[x]=x;
for(int i=head[x];i;i=c[i].next)
if(c[i].to!=p)
{
LCA(c[i].to,x);
f[c[i].to]=x;
}
v[x]=;
for(int i=Head[x];i;i=q[i].next)
if(v[q[i].to])
w[find(q[i].to)]-=;
}
int ans;
void dfs(int x)
{
v[x]=;
for(int i=head[x];i;i=c[i].next)
if(v[c[i].to])
{
dfs(c[i].to);
w[x]+=w[c[i].to];
}
}
inline void work()
{
LCA(,);
dfs();
for(int i=;i<=n;++i)
if(w[i]==) ans+=m;
else if(w[i]==) ++ans;
printf("%d",ans);
}
int main()
{
Init();
work();
return ;
}
【COGS 2434】 暗之链锁 树上差分+LCA的更多相关文章
- [补档][COGS 2434]暗之链锁
[COGS 2434]暗之链锁 题目 传说中的暗之连锁被人们称为Dark.<!--more-->Dark是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它.经过研究,你发现Dark呈现无 ...
- COGS 2434 暗之链锁 题解
[题意] 给出一个有n个点的无向图,其中有n-1条主要边且这些主要边构成一棵树,此外还有m条其他边,求斩断原图的一条主要边和一条其他边使得图不连通的方案数. 注意,即使只斩断主要边就可以使得原图不连通 ...
- COGS 2437 暗之链锁 II 题解
[题意] 给出一个有n个点的无向图,其中有n-1条主要边且这些主要边构成一棵树,此外还有m条其他边,求斩断原图的一条主要边和k条其他边使得图不连通的方案数mod109+7的值. 注意,就算你切断一条主 ...
- 树上差分 (瞎bb) [树上差分][LCA]
做noip2015的运输计划写了好久好久写不出来 QwQ 于是先来瞎bb一下树上差分 混积分 树上差分有2个常用的功能: (1)记录从点i到i的父亲这条路径走过几次 (2)将每条路径(s,t ...
- poj3417 Network 树上差分+LCA
题目传送门 题目大意:给出一棵树,再给出m条非树边,先割掉一条树边,再割掉一条非树边,问有几种割法,使图变成两部分. 思路:每一条 非树边会和一部分的树边形成一个环,分三种情况: 对于那些没有形成环的 ...
- BZOJ 4326 NOIP2015 运输计划(树上差分+LCA+二分答案)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Submit: 1388 Solved: 860 [Submit][Stat ...
- [NOIP2015]运输计划(树上差分+LCA+二分)
Description 公元 2044 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球. 小 P 掌管 ...
- NOIP2016 Day1 T2 天天爱跑步(树上差分,LCA)
原文链接 原题链接 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏 ...
- BZOJ 3631: [JLOI2014]松鼠的新家 树上差分 + LCA
Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
随机推荐
- JZOJ 5934. 列队
Description Sylvia是一个热爱学习的女孩子. 在平时的练习中,他总是能考到std以上的成绩,前段时间,他参加了一场练习赛,众所周知,机房是一个 的方阵.这 ...
- Linux基础(04)、功能配置(调整防火墙、静态IP、环境变量)
目录 一.centos防火墙 二.VMware网络连接方式 2.1.连接方式:桥接.NAT.仅主机 2.2.常见问题 三.centos配置静态IP 四.环境变量 4.1.什么是环境变量 4.2.临时修 ...
- ThinkPHP中的pathinfo模式和URL重写
语文一直不太好,要我怎么解释这个pathinfo模式还真不知道怎么说,那就先来一段代码说下pathinfo模式吧 http://serverName/appName/module/action/id/ ...
- 谭浩强C语言第四版第九章课后习题7--9题(建立,输出,删除,插入链表处理)
#include<stdio.h> #include<stdlib.h> #define N sizeof(link) typedef struct stu { struct ...
- JAVA 基础编程练习题
1 [程序 1 不死神兔] 题目:古典问题:有一对兔子,从出生后第 3 个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子对数为多少?程序分析: 兔子的规 ...
- DDR分析与布线要求
基本知识 Double Data Rate Synchronous Dynamic Random Access Memory 简称 DDR SDRAM 双倍数据率同步动态随机存取内存 DDR SDRA ...
- 深度学习(deep learning)优化调参细节(trick)
https://blog.csdn.net/h4565445654/article/details/70477979
- 关于 spring-aop理解
对于Aop 一直理解很是不到位 谈谈自己理解! Aop : Aspect: 切面 joinpoint 连接点 pointCut 切点 Advice 增强 targert 目标对象 w ...
- LinqToExcel使用简介一
最近才看到原来也可以用Linq来访问Excel,功能还挺强大的.要使用这个功能,首先得下载一个LinqToExcel的相关文件,然后就可以调用相关的方法. 使用前面介 ...
- 更换ubuntu软件源的方法
第一步:查看本系统Codename 输入lsb_release -a查看本系统Codename,我的codename是bionic,如图: 第二步:搜索与codename对应的镜像地址 我搜索到的是: ...