求方程:的解个数


分析:设,那么上述方程解的个数就与同余方程组:的解等价。


设同于方程的解分别是:,那么原方程的解的个数就是


所以现在的关键问题是求方程:的解个数。


这个方程我们需要分3类讨论:


第一种情况:


对于这种情况,如果方程的某个解设为,那么一定有,可以得到,即


所以方程的解个数就是:,也就是



第二种情况:

这样也就是说p|B,设,本方程有解的充要条件是A|t,

那么我们设t=kA,


所以进一步有:,因为,这样又转化为第三种情况了。

第三种情况:


那么我们要求指标;求指标的话又要求原根。并且奇素数p的原根也是p^a的原根,所以说求个p的原根就好了。

且如果有解,则解的个数为(A,φ(p^a))。


求指标的话就是要解决A^x ≡ B (mod p^a)的问题。由于本情况保证了(p^a, B)=1,用个Baby-step-Giant-step就

能解决问题。


方程x^A ≡ B (mod p^a)有解,当且仅当(A,φ(p^a))|ind B。ind B表示B对于p^a的任一原根的指标。





如果不知道原根与指标的现在就补一下吧:


原根部分:


定义一:设m>1,(a,m)=1,则使得成立的最小正整数r,称为a对模m的指数,或者a对模m的阶,记为


定理一:若m>1,(a,m)=1,,则


定义二:若,则a是模m的原根。


定理二:如果大于1的正整数m有原根,那么它一共有个不同的原根。


定理三:模m有原根的必要条件是m=2,4,p^a或者2p^a,其中p是奇素数。


定理四:设m>1,所有不同的奇因数是,(g,m)=1,则g是模m的原根的充要条件是:

   1<=i<=k


指标,n次剩余部分:


现在我们来研究同余式  (a,m)=1,有解的条件以及解数,注意现在的m=p^a或者2p^a,,g是模m的一个原根。


若(n,c)=d ,(a,m)=1,则上述同余式有解的充要条件是d|inda,并且在有解的条件下,解数为d。


在模m的一个简化剩余系中,n次剩余的个数是




定理一:若r通过模c的最小非负完全剩余系,则g^r通过模m的一个简化剩余系。


证明:g是模m的一个原根,则对模m两两不同余,又因为(g,m)=1,所以(g^r,m)=1

因此是模m的一个简化剩余系。


定理一:设a是一整数,(a,m)=1,若对模m的一个原根g,有一整数r存在使得下式




成立,则r就叫做以g为底的a对模m的一个指标,记为r=inda。





求同余方程x^A=B(mod m)的解个数(原根与指标)的更多相关文章

  1. 数位DP 求K进制下0~N的每个数每位上出现的数的总和

    好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...

  2. poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数

    poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数 题目大意:如题目所示 给你一些关系图——连通图,想要问你有没有个节点,损坏后,可以生成几个互相独立的网络(也就是连通分量), ...

  3. 求N的阶乘N!中末尾0的个数

    求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...

  4. 扩展欧几里得 求ax+by == n的非负整数解个数

    求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll ...

  5. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  6. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  7. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  8. POJ 2947:Widget Factory 求同余方程

    Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 5173   Accepted: 1790 De ...

  9. 51Nod1123 X^A Mod B 数论 中国剩余定理 原根 BSGS

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求 ...

随机推荐

  1. 链接oracle数据库 生成表对应的javabean

    package com.databi.utils; import java.io.File; import java.io.FileOutputStream; import java.io.IOExc ...

  2. The 2017 ACM-ICPC Asia East Continent League Final记录

    首先感谢tyz学弟的麻麻-给我们弄到了名额- 然后就开始了ACM ECLFinal的玩耍,A*仙人掌可是立了flag要好好打的- 试机赛好像就全是GCJ kickstart的原题,然后AK了但是由于一 ...

  3. 图论:KM算法

    如果,将求二分图的最大匹配的所有匹配边的权重看做1 那么用匈牙利算法求二分图的最大匹配的问题也可以看成求二分图的最大权匹配 如果边权是特例,我们就要使用KM算法来做了 这个算法其实还是比较难的,会用就 ...

  4. 2017年上海金马五校程序设计竞赛:Problem K : Treasure Map (蛇形填数)

    Description There is a robot, its task is to bury treasures in order on a N × M grids map, and each ...

  5. bzoj 1061 志愿者招募 费用流

    详见BYV的博客,写的非常全面https://www.byvoid.com/blog/noi-2008-employee /************************************** ...

  6. 如何在 Linux 上锁定虚拟控制台会话

    当你在共享的系统上工作时,你可能不希望其他用户偷窥你的控制台中看你在做什么.如果是这样,我知道有个简单的技巧来锁定自己的会话,同时仍然允许其他用户在其他虚拟控制台上使用该系统.要感谢 Vlock(Vi ...

  7. CentOS erlang安装

    1. http://www.erlang.org/下载erlang,解压缩,进入目录,检查环境 alex$ cd otp_src_18. alex$ ./configure ************* ...

  8. Selenium2+python自动化65-js定位几种方法总结【转载】

    前言 本篇总结了几种js常用的定位元素方法,并用js点击按钮,对input输入框输入文本 一.以下总结了5种js定位的方法 除了id是定位到的是单个element元素对象,其它的都是elements返 ...

  9. [转]CreateDIBitmap与CreateDIBSection

    首先明确最主要区别:CreateDIBitmap创建的是设备相关位图句柄 - HBITMAP.                               CreateDIBSection创建的是设备 ...

  10. centeros7的redis-cli命令不生效解决方法(亲测)

    如果你已经安装了redis服务器,并且已经启动,但是redis-cli命令无法生效,分析,命令未加入环境变量.那就给redis命令加入环境变量中: 注意点:redis安装目录会有不同,注意下面的PAT ...