BZOJ3110:[ZJOI2013]K大数查询(整体二分版)
浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html
题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=3110
同BZOJ1901,不过是把单点修改区间询问改成区间修改区间询问罢了。
我怕会\(TLE\),就用了区间修改区间询问的树状数组。如果还不会这个的,可以去看看这篇博客。
时间复杂度:\(O(mlog^2n)\)
空间复杂度:\(O(n)\)
代码如下:
#include <cstdio>
using namespace std;
typedef long long ll;
#define low(i) ((i)&(-(i)))
const int maxn=5e4+5;
bool bo[maxn];
int ans[maxn];
int n,m,ans_cnt;
int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
}
struct Oper {
int opt,l,r,k,id;
}p[maxn],tmp[maxn];
struct tree_array {
ll c[maxn];
void add(int pos,int v) {
if(!pos)return;
for(int i=pos;i<=n;i+=low(i))
c[i]+=v;
}
ll query(int pos) {
ll res=0;
for(int i=pos;i;i-=low(i))
res+=c[i];
return res;
}
}T1,T2;
ll ask(int pos) {
return 1ll*(pos+1)*T1.query(pos)-T2.query(pos);
}
void solve(int l,int r,int st,int ed) {
if(ed<st)return;
if(l==r) {
for(int i=st;i<=ed;i++)
if(p[i].id)ans[p[i].id]=l;
return;
}
int mid=(l+r)>>1,cnt=0;
for(int i=st;i<=ed;i++)
if(p[i].opt==1) {
if(p[i].k>mid) {
bo[i]=0;
T1.add(p[i].l,1),T1.add(p[i].r+1,-1);
T2.add(p[i].l,p[i].l),T2.add(p[i].r+1,-1-p[i].r);
}
else bo[i]=1,cnt++;
}
else {
ll res=ask(p[i].r)-ask(p[i].l-1);
if(res>=p[i].k)bo[i]=0;
else bo[i]=1,p[i].k-=res,cnt++;
}
for(int i=st;i<=ed;i++)
if(p[i].opt==1&&p[i].k>mid) {
T1.add(p[i].l,-1),T1.add(p[i].r+1,1);
T2.add(p[i].l,-p[i].l),T2.add(p[i].r+1,p[i].r+1);
}
int ED=st,ST=st+cnt;
for(int i=st;i<=ed;i++)
if(bo[i])tmp[ED++]=p[i];
else tmp[ST++]=p[i];
for(int i=st;i<=ed;i++)
p[i]=tmp[i];
solve(l,mid,st,ED-1),solve(mid+1,r,ED,ed);
}
int main() {
n=read(),m=read();
for(int i=1;i<=m;i++) {
p[i].opt=read(),p[i].l=read(),p[i].r=read(),p[i].k=read();
if(p[i].opt==2)p[i].id=++ans_cnt;
}
solve(1,n,1,m);
for(int i=1;i<=ans_cnt;i++)
printf("%d\n",ans[i]);
return 0;
}
BZOJ3110:[ZJOI2013]K大数查询(整体二分版)的更多相关文章
- BZOJ3110:[ZJOI2013]K大数查询(整体二分)
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- 【BZOJ-3110】K大数查询 整体二分 + 线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6265 Solved: 2060[Submit][Sta ...
- 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...
- P3332 [ZJOI2013]K大数查询 整体二分
终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]
有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...
- BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)
题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...
- [ZJOI2013]K大数查询——整体二分
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是: 1 a b c:表示在第a个位置到第b个位置,每个位置加上一个数c 2 a b c:表示询问从第a个位置到第b个位置,第C大的数是多少. ...
- BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分
[题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...
- BZOJ 3110 [ZJOI2013]K大数查询 (整体二分+线段树)
和dynamic rankings这道题的思想一样 只不过是把树状数组换成线段树区间修改,求第$K$大的而不是第$K$小的 这道题还有负数,需要离散 #include <vector> # ...
随机推荐
- Linux Shell编程 sort、wc命令
sort命令:字符串排序 sort 命令可以依据不同的数据类型来进行排序.sort 将文件的每一行作为一个单位,相互比较.比较原则是从首字符向后,依次按 ASCII 码值进行比较,最后将它们按升序输出 ...
- Python自然语言处理 - 系列四
一 如何使用形式化语法来描述无限的句子集合的结构? --上下位无关文法 1.1 一个例子: grammar1 = nltk.parse_cfg(""&q ...
- JS以指定格式获取当前日期
//获取当前时间,格式YYYY-MM-DD function getNowFormatDate() { var date = new Date(); var seperator1 = "-& ...
- 主攻ASP.NET MVC4.0之重生:Jquery Mobile 表单元素
相关代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...
- INSPIRED启示录 读书笔记 - 第5章 产品管理与软件开发
保持融洽的合作关系 形成合作关系的关键是双方承认彼此平等——任何一方不从属于另一方,产品经理负责定义正确的产品,开发团队负责正确地开发产品,双方相互依赖 产品经理要求开发团队完成任务,必须先取得他们的 ...
- Kubernetes List-Watch
list-watch,作为k8s系统中统一的异步消息传递方式,对系统的性能.数据一致性起到关键性的作用. list-watch操作需要做这么几件事: 由组件向apiserver而不是etcd发起wat ...
- UVA639 二叉树
题意:深度为n的二叉树每个节点上有个开关,初始为关闭,每当小球落在节点上都会改变开关的状态,问编号为m的小球最终会落在哪里. 思路:对于二叉树的节点k,左节点右节点的编号为2k,2k+1.只需由最后一 ...
- 语义web相关概念
前言:最近做的项目是自然语言处理相关的,看了一本书<语义web技术基础>,总的来看,接触自然语言处理,语义理解也有差不多一年的时间了.这两天想了一想,自己究竟学到了什么,掌握了哪些新的知识 ...
- 百度竞价推广URL通配符使用说明
{keywordid} 被替换为触发该创意的关键词ID(全局唯一ID,不是字面ID),当没有对应的keywordid时,替换为0. {creative} 被替换为所点击的创意ID(全局唯一ID). 2 ...
- POJ 1635 Subway tree systems (树的最小表示法)
题意:一串01序列,从一个点开始,0表示去下一个点,1表示回到上一个点,最后回到起点,遍历这棵树时每条边当且仅当走2次(来回) 给出两串序列,判断是否是同一棵树的不同遍历方式 题解:我们把每一个节点下 ...