浅谈离线分治算法:https://www.cnblogs.com/AKMer/p/10415556.html

题目传送门:https://lydsy.com/JudgeOnline/problem.php?id=3110

BZOJ1901,不过是把单点修改区间询问改成区间修改区间询问罢了。

我怕会\(TLE\),就用了区间修改区间询问的树状数组。如果还不会这个的,可以去看看这篇博客

时间复杂度:\(O(mlog^2n)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
using namespace std;
typedef long long ll;
#define low(i) ((i)&(-(i))) const int maxn=5e4+5; bool bo[maxn];
int ans[maxn];
int n,m,ans_cnt; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} struct Oper {
int opt,l,r,k,id;
}p[maxn],tmp[maxn]; struct tree_array {
ll c[maxn]; void add(int pos,int v) {
if(!pos)return;
for(int i=pos;i<=n;i+=low(i))
c[i]+=v;
} ll query(int pos) {
ll res=0;
for(int i=pos;i;i-=low(i))
res+=c[i];
return res;
}
}T1,T2; ll ask(int pos) {
return 1ll*(pos+1)*T1.query(pos)-T2.query(pos);
} void solve(int l,int r,int st,int ed) {
if(ed<st)return;
if(l==r) {
for(int i=st;i<=ed;i++)
if(p[i].id)ans[p[i].id]=l;
return;
}
int mid=(l+r)>>1,cnt=0;
for(int i=st;i<=ed;i++)
if(p[i].opt==1) {
if(p[i].k>mid) {
bo[i]=0;
T1.add(p[i].l,1),T1.add(p[i].r+1,-1);
T2.add(p[i].l,p[i].l),T2.add(p[i].r+1,-1-p[i].r);
}
else bo[i]=1,cnt++;
}
else {
ll res=ask(p[i].r)-ask(p[i].l-1);
if(res>=p[i].k)bo[i]=0;
else bo[i]=1,p[i].k-=res,cnt++;
}
for(int i=st;i<=ed;i++)
if(p[i].opt==1&&p[i].k>mid) {
T1.add(p[i].l,-1),T1.add(p[i].r+1,1);
T2.add(p[i].l,-p[i].l),T2.add(p[i].r+1,p[i].r+1);
}
int ED=st,ST=st+cnt;
for(int i=st;i<=ed;i++)
if(bo[i])tmp[ED++]=p[i];
else tmp[ST++]=p[i];
for(int i=st;i<=ed;i++)
p[i]=tmp[i];
solve(l,mid,st,ED-1),solve(mid+1,r,ED,ed);
} int main() {
n=read(),m=read();
for(int i=1;i<=m;i++) {
p[i].opt=read(),p[i].l=read(),p[i].r=read(),p[i].k=read();
if(p[i].opt==2)p[i].id=++ans_cnt;
}
solve(1,n,1,m);
for(int i=1;i<=ans_cnt;i++)
printf("%d\n",ans[i]);
return 0;
}

BZOJ3110:[ZJOI2013]K大数查询(整体二分版)的更多相关文章

  1. BZOJ3110:[ZJOI2013]K大数查询(整体二分)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  2. 【BZOJ-3110】K大数查询 整体二分 + 线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6265  Solved: 2060[Submit][Sta ...

  3. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  4. P3332 [ZJOI2013]K大数查询 整体二分

    终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...

  5. BZOJ 3110: [Zjoi2013]K大数查询 [整体二分]

    有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. N ...

  6. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  7. [ZJOI2013]K大数查询——整体二分

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是: 1 a b c:表示在第a个位置到第b个位置,每个位置加上一个数c 2 a b c:表示询问从第a个位置到第b个位置,第C大的数是多少. ...

  8. BZOJ 3110 [Zjoi2013]K大数查询 ——整体二分

    [题目分析] 整体二分显而易见. 自己YY了一下用树状数组区间修改,区间查询的操作. 又因为一个字母调了一下午. 貌似树状数组并不需要清空,可以用一个指针来维护,可以少一个log 懒得写了. [代码] ...

  9. BZOJ 3110 [ZJOI2013]K大数查询 (整体二分+线段树)

    和dynamic rankings这道题的思想一样 只不过是把树状数组换成线段树区间修改,求第$K$大的而不是第$K$小的 这道题还有负数,需要离散 #include <vector> # ...

随机推荐

  1. Model FEP 快易播看板推播系统

    主要特色: 低成本,快速导入 透过Wi-Fi 方式推播,现场架设容易 采Web Browser 介面登入操作,简单快速 模组化版面设定,弹性调整资料呈现方式 可整合多种连线方式与外部资料库沟通 可自行 ...

  2. python的常用的内置函数

    使用内置函数的好处:简单,快速. 1.zip():以多个序列为参数,返回元祖列表. 长度:在多个序列长度不一时,以最短的为准. 常见用途:构建多参数列表,构建字典. 2.map():在python2旧 ...

  3. matplotlib模块之子图画法

    一般化的子图布局 首先要创建各个子图的坐标轴,传入一个四元列表参数:[x,y,width,height],用来表示这个子图坐标轴原点的x坐标.y坐标,以及宽和高.值得注意的是,这四个值的取值范围都是[ ...

  4. Docker 容器监控平台-Weave Scope

    官网地址:https://www.weave.works/oss/scope/ 安装 执行如下脚本安装运行 Weave Scope. curl -L git.io/scope -o /usr/loca ...

  5. JAVA基础补漏--基础数据类型与引用数据类型

    ==在不同数据类型中意义不同. 在基础数据类型中,表示的是数值的比较. 在引用数据类型中,表示的是内存地址值的比较. 一.基本数据类型: byte:Java中最小的数据类型,在内存中占8位(bit), ...

  6. 修改jpivot源码实现分页

    使用jpivot过程中,如果查询到的结果行数超过一个阈值,后面的显示就会丢失,这时需要分页显示. 假设应用中组装的MDX语句已经含有NON EMPTY,把空行直接过滤掉了. 这时需要修改的jpivot ...

  7. 异常:没有找到本地方法库,java.lang.UnsatisfiedLinkError: no trsbean in java.library.path

    1.问题描述 迁移环境中遇到这个问题 : Fri Apr 20 15:22:31 CST 2018, Exception:500004___-500004,没有找到本地方法库,java.lang.Un ...

  8. SQL Server technical bulletin - How to resolve a deadlock

    https://support.microsoft.com/en-us/help/832524/sql-server-technical-bulletin-how-to-resolve-a-deadl ...

  9. STAR manual

    来源:STARmanual.pdf 来源:Calling variants in RNAseq PART0 准备工作 #STAR 安装前的依赖的工具 #Red Hat, CentOS, Fedora. ...

  10. nginx 反向代理配置之---指定单域名

    server { listen 80; server_name ngin服务器所对应的的域名; error_log /data/logs/nginx/mainsite.error.log; acces ...