【Foreign】开锁 [概率DP]
开锁
Time Limit: 10 Sec Memory Limit: 256 MB
Description

Input

Output

Sample Input
5 1
2 5 4 3 1
5 2
2 5 4 3 1
5 3
2 5 4 3 1
5 4
2 5 4 3 1
Sample Output
0.600000000
0.900000000
1.000000000
HINT

Main idea
一个宝箱内有一个可以开启别的宝箱的钥匙,可以选择k个宝箱,询问能开启所有宝箱的概率。
Solution
我们一看就知道这是一道概率DP的题目。
我们发现,每个宝箱有一个对应的钥匙,那么显然若干个宝箱会构成一个环,只要开了一个环中的一个宝箱就可以开启这个环。
那么我们要求的就是:在n个数中选k次,已知每个环的大小,选中环中的一个元素即视为选中了这个环,问每个环都被至少选了一次的概率。
显然直接记概率不好计算,于是我们可以算出可行的方案数。
我们先求出每个环的大小,然后令 f[i][j] 表示前 i 个环选了 j 个元素的方案数,那么显然可以枚举这一个环中选了几个,那么显然有:

然后我们最后用 f[num][k] / 总方案数 C(n,k) 即可。注意要用double来存,否则数字不够大。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE=; int T,n,k;
int a[ONE],vis[ONE],cnt;
int ring[ONE],num;
int record;
double C[ONE][ONE];
double f[ONE][ONE]; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} void Solve()
{
n=get(); k=get(); for(int i=;i<=n;i++) a[i]=get(),vis[i]=;
num=;
for(int i=;i<=n;i++)
{
if(vis[i]) continue;
int x=i;
cnt=;
for(;;)
{
vis[x]=; x=a[x]; cnt++;
if(x==i) break;
}
ring[++num]=cnt;
} memset(f,,sizeof(f));
f[][]=; record=;
for(int i=;i<=num;i++)
{
record+=ring[i];
for(int j=;j<=record;j++)
{
for(int x=;x<=ring[i] && x<=j;x++)
{
f[i][j] += f[i-][j-x] * C[ring[i]][x];
}
}
} cout<<(double)f[num][k]/C[n][k]<<endl;
} int main()
{
C[][]=;
for(int i=;i<=;i++)
{
C[i][]=;
for(int j=;j<=;j++)
C[i][j]=C[i-][j-]+C[i-][j];
} T=get();
while(T--)
Solve(); }
【Foreign】开锁 [概率DP]的更多相关文章
- HihoCoder 1075 开锁魔法III(概率DP+组合)
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- 【bzoj5004】开锁魔法II 组合数学+概率dp
题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...
- hihocoder 1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- #1075 : 开锁魔法III
描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...
- Hiho #1075: 开锁魔法III
Problem Statement 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜 ...
- 【整理】简单的数学期望和概率DP
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么 ...
- hihoCode 1075 : 开锁魔法III
时间限制:6000ms 单点时限:1000ms 内存限制:256MB 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅 ...
- HDU5985 Lucky Coins 概率dp
题意:给你N种硬币,每种硬币有Si个,有Pi 概率朝上,每次抛所有硬币抛起,所有反面的拿掉,问每种硬币成为最后的lucky硬币的概率. 题解:都知道是概率dp,但是模拟赛时思路非常模糊,很纠结,dp[ ...
- 概率dp总结
终于做到概率dp题了,开个总结帖记录一下 首先是几篇论文:有关概率和期望问题的研究 做了这么多题,实际上没什么特别好总结的,就是搞清状态和转移,顺着写就行了,和基本dp差不多 概率是由过去到现在dp[ ...
随机推荐
- Django信号的使用
https://www.cnblogs.com/renpingsheng/p/7566647.html
- 在Linux中安装和配置OpenVPN Server的最简便方法!
本文介绍了如何在基于RPM和DEB的系统中安装和配置OpenVPN服务器.我们在本文中将使用一个名为openvpn-install的脚本,它使整个OpenVPN服务器的安装和配置过程实现了自动化.该脚 ...
- 安装一个apk文件源代码
/** * 安装一个apk文件 * * @param file * 要安装的完整文件名 */ protected void installApk(File file) { ...
- DDD领域驱动设计基本理论知识总结(转)
领域驱动设计之领域模型 为什么建立一个领域模型是重要的 领域通用语言(UBIQUITOUS LANGUAGE) 将领域模型转换为代码实现的最佳实践 领域建模时思考问题的角度 领域驱动设计的经典分层架构 ...
- python接口自动化: CAS系统验证,自动完成登录并获取token,遇到302请求重定向设置(requests模块 allow_redirects=False)即可
import requestsimport re import requests import re class Crm_token(object): try: username=int(input( ...
- SPRITEKIT游戏框架之关于PHYSICS物理引擎属性
Spritekit提供了一个默认的物理模拟系统,用来模拟真实物理世界,可以使得编程者将注意力从力学碰撞和重力模拟的计算中解放出来,通过简单地代码来实现物理碰撞的模拟,而将注意力集中在更需要花费精力的地 ...
- Hadoop2.5.2集群部署(完全分布式)
环境介绍 硬件环境 CPU 4 MEM 4G 磁盘 60G 软件环境 OS:centos6.5版本 64位 Hadoop:hadoop2.5.2 64位 JDK: JDK 1.8.0_91 主机配置 ...
- LeetCode 25 —— K 个一组翻转链表
1. 题目 2. 解答 首先,利用快慢指针确定链表的总结点数. 偶数个结点时,结点个数等于 i * 2. 奇数个结点时,结点个数等于 i * 2 + 1. 然后将链表的每 K 个结点划分为一组.循环对 ...
- Tensorflow多线程输入数据处理框架
Tensorflow提供了一系列的对图像进行预处理的方法,但是复杂的预处理过程会减慢整个训练过程,所以,为了避免图像的预处理成为训练神经网络效率的瓶颈,Tensorflow提供了多线程处理输入数据的框 ...
- BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图
Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...