Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。
 

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

 

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

 

Sample Input

3 10000

Sample Output

9

Hint

2≤n≤500

0<p≤1000000000

Source

Noi2015

任意一个正数x,其大于根号x的质因数最多只有一个,由于 n<=500,我们可以知道n的质因数最多只有9种情况(2,3,5,7,11,13,17,19,以及它特殊的一个大质数)。

可以用8位二进制进行状态压缩,再特判大质数。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int mxn=;
const int pnum[]={,,,,,,,,};
struct node{
int big;
int set; }a[mxn];
int cmp(const node a,const node b){
if(a.big!=b.big)return a.big<b.big;
return a.set<b.set;
}
int f[][];//二进制压缩,[A集合用的素数][B集合用的素数]=方案数
int p1[][],p2[][];
int n,p;
int ans=;
int main(){
scanf("%d%d",&n,&p);
int i,j,k;
//分解质因数
for(i=;i<=n;i++){
int tmp=i;
for(j=;j<=;j++)//枚举每个素数
if(tmp%pnum[j]==){
a[i].set|=<<(j-);
while(tmp%pnum[j]==)tmp/=pnum[j];
}
a[i].big=tmp;//剩余的大素数,若没有则为1
}
//完成
sort(a+,a+n+,cmp);
f[][]=;
for(i=;i<=n;i++){
if(i== || a[i].big!=a[i-].big || a[i].big==){//如果新a[i]可以用来更新上一个,就复制
memcpy(p1,f,sizeof f);
memcpy(p2,f,sizeof f);
}
for(j=;j>=;j--){//倒着循环防止重复
for(k=;k>=;k--){
if((k&a[i].set)==) p1[j|a[i].set][k]=(p1[j|a[i].set][k]+p1[j][k])%p;
if((j&a[i].set)==) p2[j][k|a[i].set]=(p2[j][k|a[i].set]+p2[j][k])%p;
}
}
if(i==n || a[i].big== || a[i].big!=a[i+].big){
for(j=;j<=;j++)
for(k=;k<=;k++){
f[j][k]=((p1[j][k]+p2[j][k]-f[j][k])%p+p)%p;
}
}
}
for(i=;i<=;i++)
for(j=;j<=;j++){
if((i&j)==)ans=(ans+f[i][j])%p;//累加所有可行方案
}
printf("%d",ans);
return ;
}

Bzoj4197 寿司晚宴的更多相关文章

  1. [NOI2015][bzoj4197] 寿司晚宴 [状压dp+质因数]

    题面 传送门 思路 首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集 30pt 这种情况下n<=30,也就是说可用的质数只有10 ...

  2. 【BZOJ4197】【NOI2015】寿司晚宴(动态规划)

    [BZOJ4197][NOI2015]寿司晚宴(动态规划) 题面 BZOJ 从\([2,n]\)中选择两个集合(可以为空集),使得两个集合中各选一个数出来,都互质. 求方案数. 题解 对于\(500\ ...

  3. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  4. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  5. 【BZOJ-4197】寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  6. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  7. BZOJ4197[NOI2005]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  8. 【BZOJ4197】【Noi2015】寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  9. BZOJ4197 / UOJ129 [Noi2015]寿司晚宴

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

随机推荐

  1. Mysql双主操作

    MySQL双主(主主)架构方案   在企业中,数据库高可用一直是企业的重中之重,中小企业很多都是使用mysql主从方案,一主多从,读写分离等,但是单主存在单点故障,从库切换成主库需要作改动.因此,如果 ...

  2. Lambda方式左连接有Linq方式左连接

    网上查到的直接使用Join+DefaultIfEmpty的方式是错误的,实际生成SQL是两表先内联接,然后再LEFT JOIN.经过查证,参考资料,最终得到如下两种方式的左连接写法: public v ...

  3. YAGNI 声明

    1.YAGNI介绍 YAGNI 全名是 You aren't Going to Need It,在你设计草案的初稿中,应该努力使用最简单可以工作的事物,直至程序的某个方面要求你添加额外的特性. 2.思 ...

  4. linux内存

    在Linux的世界中,从大的方面来讲,有两块内存,一块叫做内存空间,Kernel Space,另一块叫做用户空间,即User Space.它们是相互独立的,Kernel对它们的管理方式也完全不同 驱动 ...

  5. 自动化测试--testNG

    该文章主要介绍 testNG(testing next generation,下一代测试技术)框架的使用. 1.首先安装testNG 2.安装完成后,创建maven项目,导入TESTNG和seleni ...

  6. MySQL☞length函数

    length(字符串/列名):求出该字符串/列名中字符的个数 格式: select  length(列名)  from 表名 如下图:

  7. 【page.js】配置及Page函数说明

    页面.js中的Page函数用来注册一个页面,指定页面的初始数据.生命周期回调.事件处理函数等. 语法:Page(Object)参数: Object json对象 Page({ /** * data * ...

  8. day-9 sklearn库和python自带库实现最近邻KNN算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  9. 树莓派配置 USB 无线网卡

    树莓派配置 USB 无线网卡来上网的过程. 本人使用的USB无线网卡型号:EP-N8508GS(树莓派专用型号) 一.检查 USB 无线网卡是否已经正确识别 将无线 USB 网卡插入树莓派后启动树莓派 ...

  10. python进制转换(二进制、十进制和十六进制)及注意事项

    使用内置函数实现进制转换实现比较简单,主要用到以下函数: bin().oct().int().hex() 下面分别详解一下各个函数的使用(附实例) 第一部分:其他进制转十进制 1.二进制转十进制 使用 ...