背包问题(Knapsack problem)采用动态规划求解
问题说明:
假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物
品,假设是水果好了,水果的编号、单价与重量如下所示:
0
李子
4KG
NT$4500
1
苹果
5KG
NT$5700
2
橘子
2KG
NT$2250
3
草莓
1KG
NT$1100
解法背包问题是关于最佳化的问题,要解最佳化问题可以使用「动态规划」 (Dynamicprogramming) ,从空集合开始,每增加一个元素就先求出该阶段的最佳解,直到所有的元素加入至集合中,最后得到的就是最佳解。
下面我们看下代码:
/*
问题:
假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可得之总价物品
算法说明:
采用动态规划,在当前阶段求解出最好的解,如此反复
日期:2013/8/18
张威
*/ #include <iostream>
#include <time.h>
using namespace std; #define MAXSIZE 8 //定义全局变量
char name[][] = {"李子","苹果","橘子","草莓","甜瓜"};//水果名称
int wight[] = {,,,,};//单个水果所占斤数
int price[] = {,,,,};//单个水果的价值
int perkg_price[];//每斤水果的价钱
int perkg_num[] = {,,,,}; void GetNmae(int num)
{
for (int i = ;i <= ;i++)
{
cout<<name[num][i];
}
} void GetBestAnswer(int currentwigh)
{
//判断递归终止条件
if (currentwigh >= MAXSIZE)
{
cout<<"包裹已经满了,无法再装进东西"<<endl;
}
else
{
//check用来表证到底剩下来的物品里面还有没有能装进去背包里的
bool check = true;
int i = ;
for (;i <= ;i++)
{
//若是没有进入到这个条件内,说明剩下来的物品的重量都超过了背包剩余重量,到此结束.否则i就代表当前所能选中的最优解
if (wight[perkg_num[i]] <= MAXSIZE-currentwigh)
{
check = false;
break;
}
}
if (check == true)
{
cout<<"已经装不进去任何水果了"<<endl;
}
else
{
//得到最优解,并且将当前重量增加,进入下一次递归
currentwigh += wight[perkg_num[i]];
cout<<"购买了";
GetNmae(perkg_num[i]);
cout<<endl;
GetBestAnswer(currentwigh);
}
}
} int main()
{
//计算出每斤水果的价钱,便于动态规划时求出当前最佳解
for (int i = ;i <= ;i++)
{
perkg_price[i] = price[i] / wight[i];
}
//对perkg_num进行排序,同时保证单价和perkg_num之间的一一对应关系.即两个数组要同时变化
//采用的是冒泡排序,在元素进行交换时perkg_num和perkg_price同时变化
for (int i = ;i <= ;i++)
{
for (int j = i;j <= ;j++)
{
if (perkg_price[j] < perkg_price[j+])
{
int temp1 = perkg_price[j];
int temp2 = perkg_num[j];
perkg_price[j] = perkg_price[j+];
perkg_price[j+] = temp1;
perkg_num[j] = perkg_num[j+];
perkg_num[j+] = temp2;
}
}
}
//开始计算求解
GetBestAnswer();
return ;
}
背包问题
在这里,算法的主要思想有两个:1.通过冒泡排序得到一个单价表,并将物品的ID与之配对起来.这样我们在每次的递归中通过ID找到物品的相应属性,筛选出当前步骤的最优解出来
2.通过递归,传递当前的重量,得到还剩余的重量,根据前面的单价表,筛选出可选的最优解,然后将重量变化进入下一次递归.
这是最大空间为8的运行结果: 这是最大空间为29的运行结果:


下面附上指导书上面的代码:
#include <stdio.h>
#include <stdlib.h>
#define LIMIT 8
// 重量限制
#define N 5
// 物品种类
#define MIN 1
// 最小重量
struct body {
char name[];
int size;
int price;
};
背
包
负
重 valu
e item 0 背
包
负
重 valu
e item 0 typedef struct body object;
int main(void) {
int item[LIMIT+] = {};
int value[LIMIT+] = {};
int newvalue, i, s, p;
object a[] = {{"李子", , },
{"苹果", , },
{"橘子", , },
{"草莓", , },
{"甜瓜", , }};
for(i = ; i < N;i++) {
for(s = a[i].size; s <= LIMIT;s++) {
p = s - a[i].size;
newvalue = value[p] + a[i].price;
if(newvalue > value[s]) {// 找到阶段最佳解
value[s] = newvalue;
item[s] = i;
}
}
}
printf("物品\t价格\n");
for(i = LIMIT;i >= MIN;i = i - a[item[i]].size) {
printf("%s\t%d\n",
a[item[i]].name, a[item[i]].price);
}
printf("合计\t%d\n", value[LIMIT]);
return ;
}
Java
class Fruit {
private String name;
private int size;
private int price;
public Fruit(String name,int size, int price){
this.name = name;
this.size = size;
this.price = price;
}
public String getName(){
return name;
}
public int getPrice(){
return price;
}
public int getSize() {
return size;
}
}
public class Knapsack {
public static void main(String[] args){
final int MAX = ;
final int MIN = ;
int[] item = new int[MAX+];
int[] value = new int[MAX+];
Fruit fruits[] = {
new Fruit("李子", , ),
new Fruit("苹果", , ),
new Fruit("橘子", , ),
new Fruit("草莓", , ),
new Fruit("甜瓜", , )};
for(int i = ; i < fruits.length;i++) {
for(int s = fruits[i].getSize(); s <= MAX;s++){
int p = s - fruits[i].getSize();
int newvalue = value[p] +
fruits[i].getPrice();
if(newvalue > value[s]) {// 找到阶段最佳解
value[s] = newvalue;
item[s] = i;
}
}
}
System.out.println("物品\t价格");
for(int i = MAX;
i >= MIN;
i = i - fruits[item[i]].getSize()) {
System.out.println(fruits[item[i]].getName()+
"\t" + fruits[item[i]].getPrice());
}
System.out.println("合计\t" + value[MAX]);
}
}
指导书上面的代码
我居然没想到使用结构体,失策失策,都没用什么高级点的数据结构,看起来貌似很复杂的样子.明天再看
背包问题(Knapsack problem)采用动态规划求解的更多相关文章
- 对背包问题(Knapsack Problem)的算法探究
对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...
- 【优化算法】变邻域搜索算法解决0-1背包问题(Knapsack Problem)代码实例 已
01 前言 经过小编这几天冒着挂科的风险,日日修炼,终于赶在考试周中又给大家更新了一篇干货文章.关于用变邻域搜索解决0-1背包问题的代码.怎样,大家有没有很感动? 02 什么是0-1背包问题? 0-1 ...
- 动态规划-背包问题 Knapsack
2018-03-15 13:11:12 背包问题(Knapsack problem)是一种组合优化的NP完全问题.问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何 ...
- knapsack problem 背包问题 贪婪算法GA
knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...
- 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)
继续讲故事~~ 转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...
- 0-1背包问题——动态规划求解【Python】
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...
- 0-1背包问题(0-1 knapsack problem)
0-1背包问题描述:一个正在抢劫商店的小偷发现了n个商品,第i个商品价值 vi 美元,重 wi 磅,vi 和 wi 都是整数.这个小偷希望拿走价值尽量高的商品,但他的背包最多能容纳 S 磅重的商品,S ...
- FZU 2214 Knapsack problem 01背包变形
题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...
- [DP] The 0-1 knapsack problem
Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...
随机推荐
- MVC中Linq to sql创建数据模型
1.创建新的 SQL Server 数据库 点击”视图“-->“服务器资源管理器” ,打开 “服务器资源管理器” 窗口,如下图: 右键“数据连接”,选择“创建新的SQL Server 数据库”, ...
- 计算A+B及其结果的标准形式输出
题目: 代码链接 解题思路: 首先,读懂题目,题目要求我们计算两个整型数a,b之和,这是简单的加法计算,与平常的题目一般无二.但是此题的不同在于要求我们输出的数必须是标准形式,题目也对标准形式做了相应 ...
- OrderSessionHelper查看订单在session是否存在的辅助类
1. package com.biotool.web.controller.helper; import org.apache.commons.lang3.StringUtils; import ja ...
- iOS 支付 [支付宝、银联、微信](转载)
资料 支付宝 //文档idk都包含了安卓.iOS版 银 联 银联官网资料 Demo Demo给了一个订单号,做测试使用,若出现支付失败什么的,可能是已经被别人给支付了,或者是服务器订单过期了 ~ 一. ...
- centos linux安全和调优 第四十一节课
centos linux安全和调优 第四十一节课 上半节课 Linux安全 下半节课 Linux调优 2015-07-01linux安全和调优 [复制链接]--http://www.apele ...
- 号外号外:9月13号《Speed-BI云平台案例实操--十分钟做报表》开讲了
引言:如何快速分析纷繁复杂的数据?如何快速做出老板满意的报表?如何快速将Speed-BI云平台运用到实际场景中? 本课程将通过各行各业案例背景,将Speed-BI云平台运用到实际场景中 ...
- LNMP 环境发布项目
发布地址 /srv/www/wx 默认mysql 外部访问权限关闭,需开启 另:注意数据库没有导入,index.php会是空白 chmod -R 777 /var var的权限就变成777,var下的 ...
- MIConvexHull
http://miconvexhull.codeplex.com/ 可以生成2.3维的最小凸包.可以进行狄洛尼三角剖分,生成Voronoi多边形. This project is a convex h ...
- UIButton属性
1.UIButton状态: UIControlStateNormal // 正常状态 UIControlStateHighlighted // 高亮状态 UICo ...
- How to use JDBC-Authentication of Spring Boot/Spring Security with Flyway
java.lang.IllegalStateException: Failed to load ApplicationContext at org.springframework.test.conte ...