A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

Credits:
Special thanks to @stellari for adding this problem, creating these two awesome images and all test cases.

使用扫描线法进行处理。左边点标为进入,右边点标为离开,实时维护“活动楼列表”。将同一横坐标的进入点排在前边,离开点排在后边。首先判断x点处的进入点的最高值,并将这些点加入“活动楼列表”,然后判断离开点的最高值,同时将这些点从“活动楼列表”中删除,若最高值等于当前的高度,则输出当前“活动楼列表”的最大高度。

PS:使用set或multiset维护活动楼列表时,当删除某一离开点高度时,会将该高度的所有相同值都删除,造成“活动楼列表“高度为0,产生错误,因此需在输入数据时维护一个高度列表,并在”活动楼列表“中记录进入点的高度在高度列表的坐标,避免同时删除相同高度的点。

 class Solution {
private:
#define LEFT 0;
#define RIGHT 1;
struct xEVENT
{
int x;
int height_index;
int side;
xEVENT(int _x,int _height, int _side): x(_x),height_index(_height),side(_side){}
};
private:
static bool compareevent(const xEVENT& e1,const xEVENT& e2)
{
if(e1.x!=e2.x)
return e1.x<e2.x;
return e1.side<e2.side;
}
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
int n=buildings.size(); vector<pair<int,int>> res;
if(n<)
return res;
vector<xEVENT> event;
vector<int> buildingheight;
set<int> activebuilding;
activebuilding.insert(); for(int i=;i<buildings.size();i++)
{
auto &b=buildings[i];
int index=buildingheight.size();
event.push_back(xEVENT(b[],index,)); event.push_back(xEVENT(b[],index,));
buildingheight.push_back(b[]);
}
sort(event.begin(),event.end(),compareevent);
int curheight=;
pair<int,int> tmp_pair;
for(int i=;i<event.size();i++)
{
if(event[i].side==)
{
activebuilding.insert(event[i].height_index);
int newheight=buildingheight[event[i].height_index];
int newx=event[i].x;
while(i+<event.size()&&event[i+].x==newx&&event[i+].side==)
{
i++;
activebuilding.insert(event[i].height_index);
newheight=max(newheight,buildingheight[event[i].height_index]);
}
if(newheight>curheight)
{
res.push_back(tmp_pair=make_pair(newx,newheight));
curheight=newheight;
}
}
else
{
activebuilding.erase(event[i].height_index);
int newheight=buildingheight[event[i].height_index];
int newx=event[i].x;
while(i+<event.size()&&event[i+].x==event[i].x&&event[i+].side==)
{
i++;
activebuilding.erase(event[i].height_index);
newheight=max(newheight,buildingheight[event[i].height_index]);
}
if(newheight==curheight)
{
int maxheight=;
multiset<int>:: iterator it=activebuilding.begin();
for(;it!=activebuilding.end();it++)
{
maxheight=max(maxheight,buildingheight[*it]);
}
if(maxheight<newheight)
{
res.push_back(tmp_pair=make_pair(newx,maxheight));
curheight=maxheight;
}
}
}
}
return res;
}
};

The Skyline Problem的更多相关文章

  1. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  2. [LeetCode] The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  4. [LeetCode] 281. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  5. [LeetCode] 218. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  6. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  7. UVa 105 - The Skyline Problem(利用判断,在于想法)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  8. 218. The Skyline Problem *HARD* -- 矩形重叠

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  9. 218. The Skyline Problem

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

随机推荐

  1. Hibernate的各种关联关系

    1.有多中映射 方法 //用XML配置时 <mapping resource="com/liugch/bean/Student.hbm.xml" /> //用注解配置时 ...

  2. iOS第三方类库JSPatch(热更新)

    ---------------------------------------------------------------------------------------------------- ...

  3. iOS--UISearchBar和UISearchDisplayController

    UISearchBar继承自UIView.UIResponder.NSObject 属性: autocapitalizationType————自动对输入文本对象进行大小写设置(包含4种类型,但是有时 ...

  4. iOS 自定义进度条

    自定义条形进度条(iOS) ViewController.m文件 #import "ViewController.h" @interface ViewController () @ ...

  5. macbook pro 重装系统

    重装前系统版本:10.11.6 因为我在系统更新时强行关机,后来在编译代码的时候就一直有奇怪的错误,所以选择重装系统. 前提条件:一定要有网络 1.关机状态下按住command + r ,按一下开机键 ...

  6. 关于String StringBuffer StringBuilder

    0. String对象的创建       1.关于类对象的创建,很普通的一种方式就是利用构造器,String类也不例外:String s=new String("Hello world&qu ...

  7. Eclipse修改Tomcat发布路径以及的配置多个Tomcat方法

    最近放弃了使用Myeclipse,转而使用eclipse作为开发工具,确实Myeclipse集成了太多东西,使得开发人员的配置越来越少,这 不是个好事,使用eclipse后,有些地方就得自己去配置,比 ...

  8. linux: 获取监听指定端口的进程PID

    在 linux 下经常需要杀死(重启)监听某端口的进程, 因此就写了一个小脚本, 通过 ss 命令获取监听制定端口的进程 PID, 然后通过 kill 命令结束掉进程: #!/bin/sh # set ...

  9. [麦先生]LINUX常用命令总结

    在系统的学习了如何搭建和利用LINUX进行开发后,我利用xMind这一个强大的bug级软件制作了LINUX常见操作命令汇总,但是由于博客园并不支持xMind格式文件的上传,我只能将其做成图片进行分解上 ...

  10. Listview的点击事件

    上篇文章总结了如何自定义listview的显示内容,然而listview不能只是提供显示功能,还必须能够点击它显示一些东西: listView.setOnItemClickListener(new O ...