Description

As Harry Potter series is over, Harry has no job. Since he wants to make quick money, (he wants everything quick!) so he decided to rob banks. He wants to make a calculated risk, and grab as much money as possible. But his friends - Hermione and Ron have decided upon a tolerable probability P of getting caught. They feel that he is safe enough if the banks he robs together give a probability less than P.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a real number P, the probability Harry needs to be below, and an integer N (0 < N ≤ 100), the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj (0 < Mj ≤ 100) and a real number Pj . Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj. A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

Output

For each case, print the case number and the maximum number of millions he can expect to get while the probability of getting caught is less than P.

Sample Input

3

0.04 3

1 0.02

2 0.03

3 0.05

0.06 3

2 0.03

2 0.03

3 0.05

0.10 3

1 0.03

2 0.02

3 0.05

Sample Output

Case 1: 2

Case 2: 4

Case 3: 6

 题意:
  给你p,n
  n个银行,给出每个银行可以抢的钱和 被抓的概率
  问你在被抢概率才不超过p情况下能最多抢多少钱
题解:
  01背包
  设定dp[i][j] 前i个抢j元的 最小被抓概率
  dp[i][j] = min(dp[i][j], dp[i-1][j-x] + (1-dp[i-1][j-x])*v[i]);
 

#include <cstdio>
#include <cstring>
#include <vector>
#include<iostream>
#include <algorithm>
using namespace std;
const int N = 1e2 + , M = 1e4 , mod = 1e9 + , inf = 2e9;
int T,n,x;
double dp[M+],f,p;
int main()
{
int cas = ;
scanf("%d",&T);
while(T--) {
for(int i=;i<=M;i++) dp[i] = -;
dp[] = ;
scanf("%lf%d",&p,&n);
for(int i=;i<=n;i++) {
scanf("%d%lf",&x,&f);
for(int j=M;j>=x;j--) {
if(dp[j-x]==-) continue;
///cout<<j<<endl;
if(dp[j]==-1) dp[j] = dp[j-x] + (1.0-dp[j-x])*f;
else dp[j] = min(dp[j],dp[j-x] + (1.0-dp[j-x])*f);
}
}
int ans = ;///cout<<dp[M]<<endl;
for(int i=0;i<=M;i++) {
if(dp[i]!=-1&&dp[i] <= p) ans = i;
}
printf("Case %d: %d\n",cas++,ans);
}
}

LightOJ 1079 Just another Robbery 概率背包的更多相关文章

  1. LightOJ - 1079 Just another Robbery —— 概率、背包

    题目链接:https://vjudge.net/problem/LightOJ-1079 1079 - Just another Robbery    PDF (English) Statistics ...

  2. LightOJ 1079 Just another Robbery (01背包)

    题意:给定一个人抢劫每个银行的被抓的概率和该银行的钱数,问你在他在不被抓的情况下,能抢劫的最多数量. 析:01背包,用钱数作背包容量,dp[j] = max(dp[j], dp[j-a[i] * (1 ...

  3. LightOJ 1079 Just another Robbery (01背包)

    题目链接 题意:Harry Potter要去抢银行(wtf???),有n个银行,对于每个银行,抢的话,能抢到Mi单位的钱,并有pi的概率被抓到.在各个银行被抓到是独立事件.总的被抓到的概率不能超过P. ...

  4. LightOJ-1079-Just another Robbery(概率, 背包)

    链接: https://vjudge.net/problem/LightOJ-1079#author=feng990608 题意: As Harry Potter series is over, Ha ...

  5. lightoj 1079 Just another Robbery

    题意:给出银行的个数和被抓概率上限.在给出每个银行的钱和抢劫这个银行被抓的概率.求不超过被抓概率上线能抢劫到最多的钱. dp题,转移方程 dp[i][j] = min(dp[i-1][j] , dp[ ...

  6. (概率 01背包) Just another Robbery -- LightOJ -- 1079

    http://lightoj.com/volume_showproblem.php?problem=1079 Just another Robbery As Harry Potter series i ...

  7. 1079 - Just another Robbery

    1079 - Just another Robbery   PDF (English) Statistics Forum Time Limit: 4 second(s) Memory Limit: 3 ...

  8. LightOJ - 1079 概率dp

    题意:n个银行,每个有价值和被抓概率,要求找被抓概率不超过p的最大价值 题解:dp[i][j]表示前i个取j价值的所需最小概率,01背包处理,转移方程dp[i][j]=min(dp[i-1][j],d ...

  9. hdu 2955 Robberies(概率背包)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. spring mvc静态资源文件的引用

    在页面的<title>下 <link rel="stylesheet" href="<%=request.getContextPath()%> ...

  2. 调用MySql 分页存储过程带有输入输出参数

    Create PROCEDURE getuser ( IN pageIndex INT, IN pageSize INT, OUT count INT ) BEGIN )*pageSize; sele ...

  3. Java实现Socket5代理服务器

    直接贴代码,不解释 1 主服务,用来侦听端口 package org.javaren.proxy; import java.net.ServerSocket; import java.net.Sock ...

  4. strstr 函数用法

    strstr 编辑 strstr(str1,str2) 函数用于判断字符串str2是否是str1的子串.如果是,则该函数返回str2在str1中首次出现的地址:否则,返回NULL. C语言函数 编辑 ...

  5. ubuntu.sh: 113: ubuntu.sh: Syntax error: "(" unexpected

    在ubuntu电脑上安装lnmp环境,执行下面命令时 sudo sh ubuntu.sh 报错误:ubuntu.sh: 113: ubuntu.sh: Syntax error: "(&qu ...

  6. HttpWebRequest后台读取网页类

    using System;using System.Linq;using System.Collections.Generic;using System.Web;using System.Config ...

  7. bzoj1816 扑克牌

    Description 你有n种牌,第i种牌的数目为ci.另外有一种特殊的牌:joker,它的数目是m.你可以用每种牌各一张来组成一套牌,也可以用一张joker和除了某一种牌以外的其他牌各一张组成1套 ...

  8. cocos进阶教程(2)多分辨率支持策略和原理

    cocos2d-x3.0API常用接口 Director::getInstance()->getOpenGLView()->setDesignResolutionSize() //设计分辨 ...

  9. Unity3d使用蓝牙(bluetooth)开发IOS点对点网络游戏

    著作权声明:本文由http://www.cnblogs.com/icker 原创,欢迎转载分享.转载时请保留该声明和作者博客链接,谢谢! 最近使用Unity3d制作的IOS游戏需要加入联网对战功能功能 ...

  10. [BZOJ1941][Sdoi2010]Hide and Seek

    [BZOJ1941][Sdoi2010]Hide and Seek 试题描述 小猪iPig在PKU刚上完了无聊的猪性代数课,天资聪慧的iPig被这门对他来说无比简单的课弄得非常寂寞,为了消除寂寞感,他 ...