poj 3237 Tree [LCA] (树链剖分)
inline :
1. inline 定义的类的内联函数,函数的代码被放入符号表中,在使用时直接进行替换,(像宏一样展开),没有了调用的开销,效率也很高。
2. 很明显,类的内联函数也是一个真正的函数,编译器在调用一个内联函数时,会首先检查它的参数的类型,保证调用正确。然后进行一系列的相关检查,就像对待任何一个真正的函数一样。这样就消除了它的隐患和局限性。
3. inline 可以作为某个类的成员函数,当然就可以在其中使用所在类的保护成员及私有成员。
在何时使用inline函数:
首先,你可以使用inline函数完全取代表达式形式的宏定义。
另外要注意,内联函数一般只会用在函数内容非常简单的时候,这是因为,内联函数的代码会在任何调用它的地方展开,如果函数太复杂,代码膨胀带来的恶果很可能会大于效率的提高带来的益处。内联函数最重要的使用地方是用于类的存取函数。

view code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int N = 10010;
const int INF = 1<<30;
int _, n, pre[N], fa[N], sz[N], top[N];
int gid, dep[N], son[N], id[N], fid[N];
int Max[N<<2], Min[N<<2], neg[N<<2]; struct edge
{
int u, v, w, next;
edge() {}
edge(int u, int v,int w, int next):u(u),v(v),w(w),next(next) {}
}e[N<<1];
int ecnt; inline void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, w, pre[v]);
pre[v] = ecnt++;
} inline void dfs(int u, int f, int d)
{
sz[u]=1, fa[u]=f, dep[u]=d, son[u]=0;
for(int i=pre[u]; ~i; i=e[i].next)
{
int v = e[i].v;
if(v==f) continue;
dfs(v, u, d+1);
sz[u] += sz[v];
if(sz[son[u]]<sz[v]) son[u] = v;
}
} inline void fxor(int &x)
{
x = x==INF?-INF:INF;
} inline void getpos(int u, int f)
{
id[u] = ++gid;
fid[gid] = u;
top[u] = f;
if(son[u]==0) return ;
getpos(son[u], f);
for(int i=pre[u]; ~i; i=e[i].next)
{
int v = e[i].v;
if(v==fa[u] || v==son[u]) continue;
getpos(v, v);
}
} inline void Up(int rt)
{
Max[rt] = max(Max[rt<<1], Max[rt<<1|1]);
Min[rt] = min(Min[rt<<1], Min[rt<<1|1]);
} inline void build(int l, int r, int rt)
{
neg[rt] = Min[rt] = INF, Max[rt] = -INF;
if(l==r) return ;
int m = (l+r)>>1;
build(lson);
build(rson);
} inline void Down(int rt)
{
if(neg[rt]==-INF)
{
int ls=rt<<1, rs=ls|1;
fxor(neg[ls]), fxor(neg[rs]);
Min[ls] = -Min[ls];
Max[ls] = -Max[ls];
swap(Max[ls], Min[ls]);
Min[rs] = -Min[rs];
Max[rs] = -Max[rs];
swap(Max[rs], Min[rs]);
neg[rt] = INF;
}
} inline void update(int L, int R, int c, int l, int r, int rt)
{
if(L<=l && R>=r){
if(c>-INF) Min[rt] = Max[rt] = c;
else{
fxor(neg[rt]);
Min[rt] = -Min[rt];
Max[rt] = -Max[rt];
swap(Min[rt], Max[rt]);
}
return ;
}
Down(rt);
int m = (l+r)>>1;
if(L<=m) update(L, R, c, lson);
if(R>m) update(L, R, c, rson);
Up(rt);
} inline int query(int L, int R, int l, int r, int rt)
{
if(L<=l && r<=R) return Max[rt];
Down(rt);
int m = (l+r)>>1;
int ans = -INF;
if(L<=m) ans = max(ans, query(L, R, lson));
if(R>m) ans = max(ans, query(L, R, rson));
return ans;
} inline int lcaQ(int u, int v, bool flag)
{
int fu=top[u], fv=top[v];
int ans = -INF;
while(fv!=fu)
{
if(dep[fu]<dep[fv])
{
swap(fv, fu); swap(u, v);
}
if(flag) ans = max(ans,query(id[fu], id[u], 1, gid, 1));
else update(id[fu], id[u], -INF, 1, gid, 1);
u = fa[fu];
fu = top[u];
}
if(dep[u]<dep[v]) swap(u,v);
if(u!=v)
{
if(flag) ans = max(ans, query(id[v]+1, id[u], 1, gid, 1));
else update(id[v]+1, id[u], -INF, 1, gid, 1);
}
return ans;
} inline void solve()
{
ecnt = 0, gid = 0;
memset(pre, -1, sizeof(pre));
scanf("%d", &n);
int u, v, w;
for(int i=1; i<n; i++)
{
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
}
sz[0] = 0;
dfs(1, 1, 0);
getpos(1, 1); build(1, gid , 1);
for(int i=1; i<ecnt; i+=2)
{
if(dep[e[i].u] < dep[e[i].v]) swap(e[i].u, e[i].v);
update(id[e[i].u], id[e[i].u], e[i].w, 1, gid, 1);
} char str[15];
while(scanf("%s", str)>0 && str[0]!='D')
{
scanf("%d%d", &u, &v);
if(str[0]=='Q')
printf("%d\n",lcaQ(u, v, 1));
else if(str[0]=='N')
lcaQ(u, v, 0);
else
update(id[e[2*u-1].u], id[e[2*u-1].u], v, 1, gid, 1);
}
} int main()
{
// freopen("in.txt", "r", stdin);
cin>>_;
while(_--) solve();
return 0;
}
poj 3237 Tree [LCA] (树链剖分)的更多相关文章
- poj 3237 Tree(树链剖分,线段树)
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 7268 Accepted: 1969 Description ...
- POJ 3237 Tree (树链剖分)
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 2825 Accepted: 769 Description ...
- POJ 3237 Tree 【树链剖分】+【线段树】
<题目链接> 题目大意: 给定一棵树,该树带有边权,现在对该树进行三种操作: 一:改变指定编号边的边权: 二:对树上指定路径的边权全部取反: 三:查询树上指定路径的最大边权值. 解题分析: ...
- HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分
树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...
- POJ 3237 Tree (树链拆分)
主题链接~~> 做题情绪:了. 解题思路: 主要注意如何区间更新就ok了 . 树链剖分就是树上的线段树. 代码: #include<iostream> #include<sst ...
- POJ 3723 Tree(树链剖分)
POJ 3237 Tree 题目链接 就多一个取负操作,所以线段树结点就把最大和最小值存下来,每次取负的时候,最大和最小值取负后.交换就可以 代码: #include <cstdio> # ...
- hdu Dylans loves tree [LCA] (树链剖分)
Dylans loves tree view code#pragma comment(linker, "/STACK:1024000000,1024000000") #includ ...
- HDU 3237 Tree(树链剖分)(线段树区间取反,最大值)
Tree Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 9123 Accepted: 2411 Description ...
- POJ 3237:Tree(树链剖分)
http://poj.org/problem?id=3237 题意:树链剖分.操作有三种:改变一条边的边权,将 a 到 b 的每条边的边权都翻转(即 w[i] = -w[i]),询问 a 到 b 的最 ...
随机推荐
- 重构第17天提取父类(Extract SuperClass)
今天的重构来自 Martin Fowler的http://refactoring.com/catalog/extractSuperclass.html. 理解:本文中的“提取父类”是指类中有一些字段或 ...
- .net 中读取自定义Config文件
今天做一个windows插件式服务程序,插件有时要读取配置文件的设置,但是服务是动态加载到服务上的,没有办法作到动态修改服务的配置文件(app.config).在.net 2.0中有一个Configu ...
- IIS启动网站出错的几个解决方法
在ASP.NET项目中使用了IIS服务器,由于系统是XP的,而在装系统的时候IIS没有一起装,所以从网上下载的IIS5.0版本(其它版本XP是用不了的).但是在使用的过程中老是出问题,每次调试好后,过 ...
- 自己动手搞定支付宝手机网站支付接口 FOR ECShop
支付宝WAP网站版本的支付接口网上整合的比较少,看到很多网站在卖,顿觉无语. 主要是得自己查看支付宝官方提供的SDK中的开发文档. 支付宝sdk下载地址:https://doc.open.alipay ...
- 泛函编程(21)-泛函数据类型-Monoid
Monoid是数学范畴理论(category theory)中的一个特殊范畴(category).不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid ...
- 205 Isomorphic Strings
Given two strings s and t, determine if they are isomorphic. Two strings are isomorphic if the chara ...
- linux下mysql忘记root密码解决方法
如果使用 MySQL 数据库忘记了root账号密码,可以通过调节配置文件,跳过密码的方式登数据库, 在数据库里面修改账号密码,一般默认的账号是 root 1.编辑 MySQL 配置文件 my.cnf ...
- python学习笔记2(pycharm、数据类型)
Pycharm 的使用 IDE(Integrated Development Environ ment) :集成开发环境 Vim :经典的linux下的文本编辑器(菜鸟和大神喜欢使用) Emac ...
- 股票投资组合-前进优化方法(Walk forward optimization)
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...
- ASP.NET WebAPI 12 Action的执行
Action的激活大概可以分为如下两个步骤:Action对应方法的调用,执行结果的协商.在WebAPI中由HttpActionInvoker(System.Web.Http.Controllers)进 ...