poj 3237 tree

inline :

1. inline 定义的类的内联函数,函数的代码被放入符号表中,在使用时直接进行替换,(像宏一样展开),没有了调用的开销,效率也很高。

2. 很明显,类的内联函数也是一个真正的函数,编译器在调用一个内联函数时,会首先检查它的参数的类型,保证调用正确。然后进行一系列的相关检查,就像对待任何一个真正的函数一样。这样就消除了它的隐患和局限性。

3. inline 可以作为某个类的成员函数,当然就可以在其中使用所在类的保护成员及私有成员。

在何时使用inline函数:

首先,你可以使用inline函数完全取代表达式形式的宏定义。

另外要注意,内联函数一般只会用在函数内容非常简单的时候,这是因为,内联函数的代码会在任何调用它的地方展开,如果函数太复杂,代码膨胀带来的恶果很可能会大于效率的提高带来的益处。内联函数最重要的使用地方是用于类的存取函数。

view code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int N = 10010;
const int INF = 1<<30;
int _, n, pre[N], fa[N], sz[N], top[N];
int gid, dep[N], son[N], id[N], fid[N];
int Max[N<<2], Min[N<<2], neg[N<<2]; struct edge
{
int u, v, w, next;
edge() {}
edge(int u, int v,int w, int next):u(u),v(v),w(w),next(next) {}
}e[N<<1];
int ecnt; inline void addedge(int u, int v, int w)
{
e[ecnt] = edge(u, v, w, pre[u]);
pre[u] = ecnt++;
e[ecnt] = edge(v, u, w, pre[v]);
pre[v] = ecnt++;
} inline void dfs(int u, int f, int d)
{
sz[u]=1, fa[u]=f, dep[u]=d, son[u]=0;
for(int i=pre[u]; ~i; i=e[i].next)
{
int v = e[i].v;
if(v==f) continue;
dfs(v, u, d+1);
sz[u] += sz[v];
if(sz[son[u]]<sz[v]) son[u] = v;
}
} inline void fxor(int &x)
{
x = x==INF?-INF:INF;
} inline void getpos(int u, int f)
{
id[u] = ++gid;
fid[gid] = u;
top[u] = f;
if(son[u]==0) return ;
getpos(son[u], f);
for(int i=pre[u]; ~i; i=e[i].next)
{
int v = e[i].v;
if(v==fa[u] || v==son[u]) continue;
getpos(v, v);
}
} inline void Up(int rt)
{
Max[rt] = max(Max[rt<<1], Max[rt<<1|1]);
Min[rt] = min(Min[rt<<1], Min[rt<<1|1]);
} inline void build(int l, int r, int rt)
{
neg[rt] = Min[rt] = INF, Max[rt] = -INF;
if(l==r) return ;
int m = (l+r)>>1;
build(lson);
build(rson);
} inline void Down(int rt)
{
if(neg[rt]==-INF)
{
int ls=rt<<1, rs=ls|1;
fxor(neg[ls]), fxor(neg[rs]);
Min[ls] = -Min[ls];
Max[ls] = -Max[ls];
swap(Max[ls], Min[ls]);
Min[rs] = -Min[rs];
Max[rs] = -Max[rs];
swap(Max[rs], Min[rs]);
neg[rt] = INF;
}
} inline void update(int L, int R, int c, int l, int r, int rt)
{
if(L<=l && R>=r){
if(c>-INF) Min[rt] = Max[rt] = c;
else{
fxor(neg[rt]);
Min[rt] = -Min[rt];
Max[rt] = -Max[rt];
swap(Min[rt], Max[rt]);
}
return ;
}
Down(rt);
int m = (l+r)>>1;
if(L<=m) update(L, R, c, lson);
if(R>m) update(L, R, c, rson);
Up(rt);
} inline int query(int L, int R, int l, int r, int rt)
{
if(L<=l && r<=R) return Max[rt];
Down(rt);
int m = (l+r)>>1;
int ans = -INF;
if(L<=m) ans = max(ans, query(L, R, lson));
if(R>m) ans = max(ans, query(L, R, rson));
return ans;
} inline int lcaQ(int u, int v, bool flag)
{
int fu=top[u], fv=top[v];
int ans = -INF;
while(fv!=fu)
{
if(dep[fu]<dep[fv])
{
swap(fv, fu); swap(u, v);
}
if(flag) ans = max(ans,query(id[fu], id[u], 1, gid, 1));
else update(id[fu], id[u], -INF, 1, gid, 1);
u = fa[fu];
fu = top[u];
}
if(dep[u]<dep[v]) swap(u,v);
if(u!=v)
{
if(flag) ans = max(ans, query(id[v]+1, id[u], 1, gid, 1));
else update(id[v]+1, id[u], -INF, 1, gid, 1);
}
return ans;
} inline void solve()
{
ecnt = 0, gid = 0;
memset(pre, -1, sizeof(pre));
scanf("%d", &n);
int u, v, w;
for(int i=1; i<n; i++)
{
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
}
sz[0] = 0;
dfs(1, 1, 0);
getpos(1, 1); build(1, gid , 1);
for(int i=1; i<ecnt; i+=2)
{
if(dep[e[i].u] < dep[e[i].v]) swap(e[i].u, e[i].v);
update(id[e[i].u], id[e[i].u], e[i].w, 1, gid, 1);
} char str[15];
while(scanf("%s", str)>0 && str[0]!='D')
{
scanf("%d%d", &u, &v);
if(str[0]=='Q')
printf("%d\n",lcaQ(u, v, 1));
else if(str[0]=='N')
lcaQ(u, v, 0);
else
update(id[e[2*u-1].u], id[e[2*u-1].u], v, 1, gid, 1);
}
} int main()
{
// freopen("in.txt", "r", stdin);
cin>>_;
while(_--) solve();
return 0;
}

poj 3237 Tree [LCA] (树链剖分)的更多相关文章

  1. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  2. POJ 3237 Tree (树链剖分)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 2825   Accepted: 769 Description ...

  3. POJ 3237 Tree 【树链剖分】+【线段树】

    <题目链接> 题目大意: 给定一棵树,该树带有边权,现在对该树进行三种操作: 一:改变指定编号边的边权: 二:对树上指定路径的边权全部取反: 三:查询树上指定路径的最大边权值. 解题分析: ...

  4. HDU 3966 & POJ 3237 & HYSBZ 2243 树链剖分

    树链剖分是一个很固定的套路 一般用来解决树上两点之间的路径更改与查询 思想是将一棵树分成不想交的几条链 并且由于dfs的顺序性 给每条链上的点或边标的号必定是连着的 那么每两个点之间的路径都可以拆成几 ...

  5. POJ 3237 Tree (树链拆分)

    主题链接~~> 做题情绪:了. 解题思路: 主要注意如何区间更新就ok了 . 树链剖分就是树上的线段树. 代码: #include<iostream> #include<sst ...

  6. POJ 3723 Tree(树链剖分)

    POJ 3237 Tree 题目链接 就多一个取负操作,所以线段树结点就把最大和最小值存下来,每次取负的时候,最大和最小值取负后.交换就可以 代码: #include <cstdio> # ...

  7. hdu Dylans loves tree [LCA] (树链剖分)

    Dylans loves tree view code#pragma comment(linker, "/STACK:1024000000,1024000000") #includ ...

  8. HDU 3237 Tree(树链剖分)(线段树区间取反,最大值)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 9123   Accepted: 2411 Description ...

  9. POJ 3237:Tree(树链剖分)

    http://poj.org/problem?id=3237 题意:树链剖分.操作有三种:改变一条边的边权,将 a 到 b 的每条边的边权都翻转(即 w[i] = -w[i]),询问 a 到 b 的最 ...

随机推荐

  1. 重构第17天提取父类(Extract SuperClass)

    今天的重构来自 Martin Fowler的http://refactoring.com/catalog/extractSuperclass.html. 理解:本文中的“提取父类”是指类中有一些字段或 ...

  2. .net 中读取自定义Config文件

    今天做一个windows插件式服务程序,插件有时要读取配置文件的设置,但是服务是动态加载到服务上的,没有办法作到动态修改服务的配置文件(app.config).在.net 2.0中有一个Configu ...

  3. IIS启动网站出错的几个解决方法

    在ASP.NET项目中使用了IIS服务器,由于系统是XP的,而在装系统的时候IIS没有一起装,所以从网上下载的IIS5.0版本(其它版本XP是用不了的).但是在使用的过程中老是出问题,每次调试好后,过 ...

  4. 自己动手搞定支付宝手机网站支付接口 FOR ECShop

    支付宝WAP网站版本的支付接口网上整合的比较少,看到很多网站在卖,顿觉无语. 主要是得自己查看支付宝官方提供的SDK中的开发文档. 支付宝sdk下载地址:https://doc.open.alipay ...

  5. 泛函编程(21)-泛函数据类型-Monoid

    Monoid是数学范畴理论(category theory)中的一个特殊范畴(category).不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid ...

  6. 205 Isomorphic Strings

    Given two strings s and t, determine if they are isomorphic. Two strings are isomorphic if the chara ...

  7. linux下mysql忘记root密码解决方法

    如果使用 MySQL 数据库忘记了root账号密码,可以通过调节配置文件,跳过密码的方式登数据库, 在数据库里面修改账号密码,一般默认的账号是 root 1.编辑 MySQL 配置文件 my.cnf ...

  8. python学习笔记2(pycharm、数据类型)

    Pycharm 的使用 IDE(Integrated  Development  Environ ment) :集成开发环境 Vim  :经典的linux下的文本编辑器(菜鸟和大神喜欢使用) Emac ...

  9. 股票投资组合-前进优化方法(Walk forward optimization)

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  10. ASP.NET WebAPI 12 Action的执行

    Action的激活大概可以分为如下两个步骤:Action对应方法的调用,执行结果的协商.在WebAPI中由HttpActionInvoker(System.Web.Http.Controllers)进 ...