HDU1250 高精度斐波那契数列
Hat's Fibonacci
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10568 Accepted Submission(s): 3507
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
Note:
No generated Fibonacci number in excess of 2005 digits will be in the test data, ie. F(20) = 66526 has 5 digits.
#include <iostream>
#include <stdio.h>
using namespace std;
int a[][]={};
int main()
{
int i,j,n;
a[][]=;
a[][]=;
a[][]=;
a[][]=;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
a[i][j]+=a[i-][j]+a[i-][j]+a[i-][j]+a[i-][j];
a[i][j+]+=a[i][j]/;
a[i][j]=a[i][j]%;
}
}
while(cin>>n)
{
for(j=;j>=;j--)
if(a[n][j]!=)
break;
cout<<a[n][j];
for(j=j-;j>=;j--)
printf("%08d",a[n][j]); //不能直接cout 数大的时候是错的 因为可能会输出七位 正常应该输出八位的 反正就是不对
cout<<endl;
}
return ;
}
HDU1250 高精度斐波那契数列的更多相关文章
- [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...
- 剑指Offer - 九度1387 - 斐波那契数列
剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
- 使用高精度计算斐波那契数列 c++
使用高精度计算斐波那契数列 非高精度 Code(Non-high accuracy) 这是不用高精度的代码 #include<bits/stdc++.h> using namespace ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
随机推荐
- Dinic问题
问题:As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Offic ...
- Hession矩阵与牛顿迭代法
1.求解方程. 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难.利用牛顿法,可以迭代求解. 原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f' ...
- 洛谷P1134 阶乘问题
题目描述 也许你早就知道阶乘的含义,N阶乘是由1到N相乘而产生,如: 12! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 = 479,001, ...
- 使用SubLineText3
一 Sublinetext3 1. Sublime Text3是一款跨平台的编辑器, 2. 安装网址: http://www.sublimetext.com/3 二 常用使用方法 1)打开控制台: V ...
- hiho1015(kmp+统计出现次数)
http://hihocoder.com/problemset/problem/1015 时隔多天再次温习了一下KMP #include <iostream> #include <c ...
- ProcDump
https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx
- matlab figure 论文级别绘图
1.将figure调整为最大: figure;set(gcf,'outerposition',get(0,'screensize')); 2.获得figure中的大小 [x,y] = ginput 3 ...
- 繁华模拟赛 Evensgn与字符矩阵
#include<iostream> #include<cstdio> #include<string> #include<cstring> #incl ...
- POJ 3267 The Cow Lexicon
又见面了,还是原来的配方,还是熟悉的DP....直接秒了... The Cow Lexicon Time Limit: 2000MS Memory Limit: 65536K Total Submis ...
- tolua.cast的实用方法
local name = (tolua.cast(sender, "ccui.Button")):getTitleText()