HDU1250 高精度斐波那契数列
Hat's Fibonacci
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10568 Accepted Submission(s): 3507
F(1) = 1, F(2) = 1, F(3) = 1,F(4) = 1, F(n>4) = F(n - 1) + F(n-2) + F(n-3) + F(n-4)
Your task is to take a number as input, and print that Fibonacci number.
Note:
No generated Fibonacci number in excess of 2005 digits will be in the test data, ie. F(20) = 66526 has 5 digits.
#include <iostream>
#include <stdio.h>
using namespace std;
int a[][]={};
int main()
{
int i,j,n;
a[][]=;
a[][]=;
a[][]=;
a[][]=;
for(i=;i<;i++)
{
for(j=;j<;j++)
{
a[i][j]+=a[i-][j]+a[i-][j]+a[i-][j]+a[i-][j];
a[i][j+]+=a[i][j]/;
a[i][j]=a[i][j]%;
}
}
while(cin>>n)
{
for(j=;j>=;j--)
if(a[n][j]!=)
break;
cout<<a[n][j];
for(j=j-;j>=;j--)
printf("%08d",a[n][j]); //不能直接cout 数大的时候是错的 因为可能会输出七位 正常应该输出八位的 反正就是不对
cout<<endl;
}
return ;
}
HDU1250 高精度斐波那契数列的更多相关文章
- [luogu2144][bzoj1002][FJOI2007]轮状病毒【高精度+斐波那契数列+基尔霍夫矩阵】
题目描述 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图所示 N轮状病 ...
- 剑指Offer - 九度1387 - 斐波那契数列
剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...
- 纪中23日c组T3 2161. 【2017.7.11普及】围攻 斐波那契数列
2161. 围攻 (File IO): input:siege.in output:siege.out 时间限制: 1000 ms 空间限制: 262144 KB 具体限制 Goto Prob ...
- 使用高精度计算斐波那契数列 c++
使用高精度计算斐波那契数列 非高精度 Code(Non-high accuracy) 这是不用高精度的代码 #include<bits/stdc++.h> using namespace ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
随机推荐
- LeetCode 65 Valid Number
(在队友怂恿下写了LeetCode上的一个水题) 传送门 Validate if a given string is numeric. Some examples: "0" =&g ...
- Codeforces 1C Ancient Berland Circus
传送门 题意 给出一正多边形三顶点的坐标,求此正多边形的面积最小值. 分析 为了叙述方便,定义正多边形的单位圆心角u为正多边形的某条边对其外接圆的圆心角(即外接圆的某条弦所对的圆心角). (1)多边形 ...
- appium向右滑动
/*** * 右滑1/2屏幕 / public static void slideRight(){ int x=driver.manage().window().getSize().width; in ...
- WWDC2014总结---For产品经理们
一年一度的苹果开发者大会WWDC2014,在北京时间6月3日凌晨1点开始了,苹果发布了iOS8.OSX10.10等,苹果比以前更加开放了,网上东西很多很杂,但缺少从产品开发角度来梳理的文章. 我根据这 ...
- 能产生粒子效果的CAEmitterLayer
能产生粒子效果的CAEmitterLayer 下雪效果: // // RootViewController.m // Cell // // Copyright (c) 2014年 Y.X. All r ...
- MSF溢出实战教程
1. 进入终端,开启MSF相关服务 2. 连接数据库 3. 主机扫描 发现如果有MS08_067漏洞,就可以继续渗透 4. 开始溢出 溢出成功的话 sessions -l 查看 ...
- WPF 显示gif
using System; using System.IO; using System.Collections.Generic; using System.Windows; using System. ...
- gnl总结(#,%,$)
Ognl表达式struts标签“%,#,$” 1.什么是Ognl? OGNL(Object-Graphic Navigation Language),对象图道行语言.是一种可以方便操作对象属性的开源表 ...
- 新浪微博客户端(32)-设置相册图片的contentMode
DJStatusPhotoView.m #import "DJStatusPhotoView.h" #import "UIImageView+WebCache.h&quo ...
- C++关键字 explicit
C++提供了关键字explicit,可以阻止不应该允许的经过转换构造函数进行的隐式转换的发生.声明为explicit的构造函数不能在隐式转换中使用. C++中, 一个参数的构造函数(或者除了第一个参数 ...