BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)
一开始真没想出解法。。。后来发现那么水。。。。
2257: [Jsoi2009]瓶子和燃料
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 970 Solved: 577
[Submit][Status][Discuss]
Description
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了。
有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换。jyy
的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 。 jyy
将 K个瓶子交给火星人之后,火星人用它们装一些燃料给 jyy。所有的瓶子都没有刻度,只
在瓶口标注了容量,第i个瓶子的容量为Vi(Vi 为整数,并且满足1<=Vi<=1000000000 ) 。
火星人比较吝啬,他们并不会把所有的瓶子都装满燃料。他们拿到瓶子后,会跑到燃料
库里鼓捣一通,弄出一小点燃料来交差。jyy当然知道他们会来这一手,于是事先了解了火
星人鼓捣的具体内容。火星人在燃料库里只会做如下的3种操作:1、将某个瓶子装满燃料;
2、将某个瓶子中的燃料全部倒回燃料库;3、将燃料从瓶子a倒向瓶子b,直到瓶子b满
或者瓶子a空。燃料倾倒过程中的损耗可以忽略。火星人拿出的燃料,当然是这些操作能
得到的最小正体积。
jyy知道,对于不同的瓶子组合,火星人可能会被迫给出不同体积的燃料。jyy希望找
到最优的瓶子组合,使得火星人给出尽量多的燃料。
Input
第1行:2个整数N,K,
第2..N 行:每行1个整数,第i+1 行的整数为Vi
Output
仅1行,一个整数,表示火星人给出燃料的最大值。
Sample Input
3 2
3
4
4
Sample Output
4
HINT
选择第2 个瓶子和第 个瓶子,火星人被迫会给出4 体积的容量。
Source
首先是裴蜀定理:
若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。
所以结果一定是gcd。那么分解因数,扫描一遍找到最大的,且数量>=k(m)的因数,即为答案
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
int n,m;
int yz[10000010];
int cnt=0,num;
void work(int x)
{
for (int i=1; i<=sqrt(x); i++)
if (x%i==0) {yz[++cnt]=i;if (i!=x/i) yz[++cnt]=x/i;}
}
int main()
{
n=read(),m=read();
for (int i=1; i<=n; i++) {int x=read();work(x);}
sort(yz+1,yz+cnt+1);
num=1;
for (int i=cnt; i>=1; i--)
{
if (yz[i]==yz[i+1]) {num++;if (num==m) {printf("%d\n",yz[i+1]);break;}}
else num=1;
}
return 0;
}
BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)的更多相关文章
- BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】
2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1326 Solved: 815[Submit][Stat ...
- bzoj 2257[Jsoi2009]瓶子和燃料 数论/裴蜀定理
题目 Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1< ...
- BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理
2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- bzoj 2257: [Jsoi2009]瓶子和燃料【裴蜀定理+gcd】
裴蜀定理:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立. 所以最后能得到的最小燃料书就是gcd,所以直 ...
- 【bzoj2257】[Jsoi2009]瓶子和燃料 扩展裴蜀定理+STL-map
题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.从中选出 $k$ 个瓶子,使得能够通过这 $k$ 个瓶子凑出 ...
- BZOJ2257 [Jsoi2009]瓶子和燃料 【裴蜀定理】
题目链接 BZOJ2257 题解 由裴蜀定理我们知道,若干的瓶子如此倾倒最小能凑出的是其\(gcd\) 现在我们需要求出\(n\)个瓶子中选出\(K\)个使\(gcd\)最大 每个数求出因数排序即可 ...
- BZOJ-2257:瓶子和燃料(裴蜀定理)
jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy的飞船上共有 N个瓶子(1<=N<=1000) ,经过 ...
- luoguP4571 [JSOI2009]瓶子和燃料 裴蜀定理
裴蜀定理的扩展 最后返回的一定是\(k\)个数的\(gcd\) 因此对于每个数暴力分解因子统计即可 #include <map> #include <cstdio> #incl ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
随机推荐
- 第24章 SEH结构化异常处理_异常处理及软件异常
24.1 程序的结构 (1)try/except框架 __try{ //被保护的代码块 …… } __except(except fileter/*异常过滤程序*/){ //异常处理程序 } (2) ...
- .Net Framework 4.0 内部排序探索
简介 一时好奇心起,想一窥.Net Framework 4.0内部究竟是使用何种算法排序.以前听人说Framework内部是使用的快速排序,但究竟耳听为虚,眼见为实.主要通过JetBrains dot ...
- mongoVUE1.5.3 破解方法
MongoVUE是个免费软件,但超过15天后功能受限.可以通过删除以下注册表项来解除限制: [HKEY_CURRENT_USER\Software\Classes\CLSID\{B1159E65-82 ...
- [转] 国外程序员整理的 C++ 资源大全
关于 C++ 框架.库和资源的一些汇总列表,由 fffaraz 发起和维护. 内容包括:标准库.Web应用框架.人工智能.数据库.图片处理.机器学习.日志.代码分析等. 标准库 C++标准库,包括了S ...
- 验证码生成的c语言库
http://www.open-open.com/lib/view/open1324534929968.html
- 经典71道Android试题及答案
本文为开发者奉献了70道经典Android面试题加答案--重要知识点几乎都涉及到了,你还等啥,赶紧收藏吧!! 1. 下列哪些语句关于内存回收的说明是正确的? (b) A. 程序员必须创建一个线程来释放 ...
- JavaScript---基本语法
字符串方法:str.lengthstr.charAt(i):取字符串中的某一个;str.indexOf('e');找第一个出现的位置;找不到返回-1;str.lastIndexOf('e'):找最后一 ...
- Redis word bak
@font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@f ...
- 【C#】WM 消息大全
消息名 消息值 说明 WM_CREATE 0x0001 应用程序创建一个窗口 WM_DESTROY 0x0002 一个窗口被销毁 WM_MOVE 0x0003 移动一个窗口 WM_SIZE 0x000 ...
- JS实现点击跳转登陆邮箱
前言 注册的过程中往往需要填写邮箱,并登陆邮箱进行验证.利用JS可以实现针对不同的邮箱进行点击登录验证,以下为实现方案,很简单 代码 邮箱域名数据 1 2 3 4 5 6 7 8 9 10 11 ...