本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装。关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了。官方教程看这里:https://www.tensorflow.org/get_started/os_setup

如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tensorflow.org/get_started/os_setup#optional-install-cuda-gpus-on-linux

我们还需要一个Python编译器,这里我们使用Anaconda,Anaconda2对应Python2,Anaconda3对应Python3,我使用Anaconda2。Anaconda自带了一些常用的Python包,以及一些比较好用的Python编译器。

配置好TensorFlow以后,打开Anaconda的Spyder,输入以下代码检查TensorFlow是否可用。

import tensorflow as tf
hello = tf.constant('Hello TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
a = tf.constant(10)
b = tf.constant(32)
print(sess.run(a + b))

如果遇到任何报错,请参考:https://www.tensorflow.org/get_started/os_setup#common_problems

使用TensorFlow之前,要了解一下TensorFlow的基本知识:

1. 使用图(graphs)来表示计算;

2.在会话(Session)中执行图;

3.使用张量(tensors)来代表数据;

4.通过变量(variables)来维护状态;

5.使用供给(feeds)和取回(fetches)来传入或者传出数据。

关于详细的基础使用,请参考:https://www.tensorflow.org/get_started/basic_usage, 太长不看的,至少看下代码以及代码的注释。

了解了这些基本用法以后,活动一下筋骨,来编个小程序测试一下我们学习的结果吧,目标是优化一个一次函数y = wx + b的权值w和偏置b,使得w和b接近给定的表达式y = 0.1*x + b,代码如下:

import tensorflow as tf
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=0.2
sess = tf.InteractiveSession(config=config) x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3 W = tf.Variable(tf.random_uniform([1],-1.0,1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)
for step in xrange(201):
sess.run(train)
if step % 20 ==0:
print(step, sess.run(W), sess.run(b))

代码运行结果如下:

可以看到经过200次迭代,权重w已经接近预设值0.1,b 接近预设值0.3,实际上80次的时候已经收敛到很好的结果了。

接下来,我们进行下一步的工作,用神经网络来进行MNIST手写数字的识别,MNIST手写数字分 training 和 test 两个大类,training 有6万张28*28大小的手写数字,test有1万张28*28大小的数字,更具体的介绍看这里:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

MNIST手写数字识别在TensorFlow的example中有自带的代码来实现,官方文档也给出了很好的解释,https://www.tensorflow.org/tutorials/mnist/beginners/https://www.tensorflow.org/tutorials/mnist/pros/这两个,建议都看,加强自己对TensorFlow的理解。

至此,TensorFlow已经有了基本的入门知识,然鹅,还是不足以支撑我膨胀的野心,我是要成为加勒比海盗一样的男人,我是要成为TF Boys一样的男人(背景声音:噫~~),这种基本知识怎么能满足得了我这么优秀的头脑。

接下来,我们来看TensorFlow Mechanics 101,说实话,我也不知道这个名字是什么意思,反正是个教程,管他呢,先学会再说。这里面看起来也不难啊,就是介绍了examples/tutorials/mnist/mnist.py 和 examples/tutorials/mnist/fully_connected_feed.py两个函数,顺便说一下,用pip安装之后的TensorFlow目录一般在:/usr/local/lib/python2.7/dist-packages/tensorflow/或者是/usr/lib/python2.7/dist-packages/tensorflow/这里。细看这两个文件的代码,不是很难,如果前面的知识认真看了,这个可以直接看代码而不看官方文档,实在不明白的地方可以看官方文档的解释。

在看代码的过程中,有不明白的函数,就去Python API这里找相应的函数来看,https://www.tensorflow.org/api_docs/python/,找不到的话,可以点右上角的搜索来搜索该函数。

先写到这里,明天更新TensorFlow的How To。

参考文献:

1. https://www.tensorflow.org/tutorials/

TF Boys (TensorFlow Boys ) 养成记(一)的更多相关文章

  1. TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  2. TF Boys (TensorFlow Boys ) 养成记(六)

    圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...

  3. TF Boys (TensorFlow Boys ) 养成记(五)

    有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...

  4. TF Boys (TensorFlow Boys ) 养成记(四)

    前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...

  5. TF Boys (TensorFlow Boys ) 养成记(三)

    上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...

  6. TF Boys (TensorFlow Boys ) 养成记(二)

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  7. TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  8. TF Boys (TensorFlow Boys ) 养成记(六): CIFAR10 Train 和 TensorBoard 简介

    圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...

  9. TF Boys (TensorFlow Boys ) 养成记(三): TensorFlow 变量共享

    上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...

随机推荐

  1. Ajax请求SpringMVC

    @RequestMapping(value = "/loadMenu", method = RequestMethod.GET) @ResponseBody public Arra ...

  2. Linq查询数据集取得排序后的序列号(行号)

    今天群里有同学问如何用linq取结果集的行号,查了一下资料,发现linq有很简单的方法可以实现,花了几分钟写了一个测试用例,现记录下来,以备参考: /// <summary> /// 测试 ...

  3. Oracle 包(Package)

    引用这位大大的: http://www.cnblogs.com/lovemoon714/archive/2012/02/29/2373695.html 1.为什么要使用包?       答:在一个大型 ...

  4. DSS中间件介绍

    DSS中间件采用HTTP协议,终端可以是任何的支持Http协议的设备,开发工具和语言均不受限制 DMS消息服务, 采用类似HTTP的协议 DSS-API介绍(持续更新) http://www.dioc ...

  5. Median of Two Sorted Arrays

    题目:https://leetcode.com/problems/median-of-two-sorted-arrays/ 算法分析 这道题的目的,是为了从两个有序列中找到合并序列之后的中位数,即两个 ...

  6. UWP深入学习二:各种激活方式

    Launching, resuming, and multitasking How to launch an app for results Auto-launching with file and ...

  7. MyEclipse取消验证Js的两种途径.

    前言:有时我们通过js写一个web工程的相关页面时感觉很卡,修改内存也不行下面有俩种解决方法: 1.  选中当前工程—properties—MyEclipse—validation—Excluded ...

  8. 非官方windows下Cpython二进制扩展包下载地址

    Unofficial Windows Binaries for Python Extension Packages url:http://www.lfd.uci.edu/~gohlke/pythonl ...

  9. Linux-TFTP之用于网络远程安装

    TFTP:Trival File Transfer Protocol,简单文件传输协议.是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂.开销不大的文件传输服务. ...

  10. 【区间dp】codevs1966 乘法游戏

    f(i,j)=min{f(i,k)+f(k,j)+a[i]*a[k]*a[j]}(1<=i<=j<=n,i<k<j) #include<cstdio> #in ...