Spark中常用的算法:

3.2.1 分类算法

分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类。分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个性偏好等。MLlib 目前支持分类算法有:逻辑回归、支持向量机、朴素贝叶斯和决策树。

案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差。

import org.apache.spark.SparkContext

import org.apache.spark.mllib.classification.SVMWithSGD

import org.apache.spark.mllib.regression.LabeledPoint

 

// 加载和解析数据文件

val data = sc.textFile("mllib/data/sample_svm_data.txt")

val parsedData = data.map { line =>

  val parts = line.split(' ')

  LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)

}

 

// 设置迭代次数并进行进行训练

val numIterations = 20

val model = SVMWithSGD.train(parsedData, numIterations)

 

// 统计分类错误的样本比例

val labelAndPreds = parsedData.map { point =>

val prediction = model.predict(point.features)

(point.label, prediction)

}

val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count

println("Training Error = " + trainErr)

3.2.2 回归算法

回归算法属于监督式学习,每个个体都有一个与之相关联的实数标签,并且我们希望在给出用于表示这些实体的数值特征后,所预测出的标签值可以尽可能接近实际值。MLlib 目前支持回归算法有:线性回归、岭回归、Lasso和决策树。

案例:导入训练数据集,将其解析为带标签点的RDD,使用 LinearRegressionWithSGD 算法建立一个简单的线性模型来预测标签的值,最后计算均方差来评估预测值与实际值的吻合度。

import org.apache.spark.mllib.regression.LinearRegressionWithSGD

import org.apache.spark.mllib.regression.LabeledPoint

 

// 加载和解析数据文件

val data = sc.textFile("mllib/data/ridge-data/lpsa.data")

val parsedData = data.map { line =>

  val parts = line.split(',')

  LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)

}

 

//设置迭代次数并进行训练

val numIterations = 20

val model = LinearRegressionWithSGD.train(parsedData, numIterations)

 

// 统计回归错误的样本比例

val valuesAndPreds = parsedData.map { point =>

val prediction = model.predict(point.features)

(point.label, prediction)

}

val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count

println("training Mean Squared Error = " + MSE)

3.2.3 聚类算法

聚 类算法属于非监督式学习,通常被用于探索性的分析,是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并 且对每一个这样的簇进行描述的过程。它的目的是使得属于同一簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似,常见的典型应用场景有客户细分、客 户研究、市场细分、价值评估。MLlib 目前支持广泛使用的KMmeans聚类算法。

案例:导入训练数据集,使用 KMeans 对象来将数据聚类到两个类簇当中,所需的类簇个数会被传递到算法中,然后计算集内均方差总和 (WSSSE),可以通过增加类簇的个数 k 来减小误差。 实际上,最优的类簇数通常是 1,因为这一点通常是WSSSE图中的 “低谷点”。

import org.apache.spark.mllib.clustering.KMeans

 

// 加载和解析数据文件

val data = sc.textFile("kmeans_data.txt")

val parsedData = data.map( _.split(' ').map(_.toDouble))

// 设置迭代次数、类簇的个数

val numIterations = 20

val numClusters = 2

 

// 进行训练

val clusters = KMeans.train(parsedData, numClusters, numIterations)

 

// 统计聚类错误的样本比例

val WSSSE = clusters.computeCost(parsedData)

println("Within Set Sum of Squared Errors = " + WSSSE)

3.2.4 协同过滤

协同过滤常被应用于推荐系统,这些技术旨在补充用户-商品关联矩阵中所缺失的部分。MLlib当前支持基于模型的协同过滤,其中用户和商品通过一小组隐语义因子进行表达,并且这些因子也用于预测缺失的元素。

案例:导入训练数据集,数据每一行由一个用户、一个商品和相应的评分组成。假设评分是显性的,使用默认的ALS.train()方法,通过计算预测出的评分的均方差来评估这个推荐模型。

import org.apache.spark.mllib.recommendation.ALS

import org.apache.spark.mllib.recommendation.Rating

 

// 加载和解析数据文件

val data = sc.textFile("mllib/data/als/test.data")

val ratings = data.map(_.split(',') match {

case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)

})

 

// 设置迭代次数

val numIterations = 20

val model = ALS.train(ratings, 1, 20, 0.01)

 

// 对推荐模型进行评分

val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}

val predictions = model.predict(usersProducts).map{

case Rating(user, product, rate) => ((user, product), rate)

}

val ratesAndPreds = ratings.map{

case Rating(user, product, rate) => ((user, product), rate)

}.join(predictions)

val MSE = ratesAndPreds.map{

case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)

}.reduce(_ + _)/ratesAndPreds.count

println("Mean Squared Error = " + MSE)

摘自:http://www.cnblogs.com/shishanyuan/p/4747761.html

Spark中常用的算法的更多相关文章

  1. ACM 中常用的算法有哪些? 2014-08-21 21:15 40人阅读 评论(0) 收藏

    ACM 中常用的算法有哪些?作者: 张俊Michael 网络上流传的答案有很多,估计提问者也曾经去网上搜过.所以根据自己微薄的经验提点看法. 我ACM初期是训练编码能力,以水题为主(就是没有任何算法, ...

  2. Spark中的聚类算法

    Spark - Clustering 官方文档:https://spark.apache.org/docs/2.2.0/ml-clustering.html 这部分介绍MLlib中的聚类算法: 目录: ...

  3. Spark中常用工具类Utils的简明介绍

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  4. ACM 中常用的算法有哪些?

    在网上看到别人ACM学习的心得,转载过来,源地址不记得了,当时是百度的.内容如下: 网络上流传的答案有很多,估计提问者也曾经去网上搜过.所以根据自己微薄的经验提点看法. 我ACM初期是训练编码能力,以 ...

  5. 面试中常用排序算法实现(Java)

    当我们进行数据处理的时候,往往需要对数据进行查找操作,一个有序的数据集往往能够在高效的查找算法下快速得到结果.所以排序的效率就会显的十分重要,本篇我们将着重的介绍几个常见的排序算法,涉及如下内容: 排 ...

  6. R中常用数据挖掘算法包

    数据挖掘主要分为4类,即预测.分类.聚类和关联,根据不同的挖掘目的选择相应的算法.下面对R语言中常用的数据挖掘包做一个汇总: 连续因变量的预测: stats包 lm函数,实现多元线性回归 stats包 ...

  7. js中常用的算法排序

    在工作中都会经常用到的一些基础算法,可以很快解决问题.这些都是在工作中总结的,希望可以帮助到大家. 一.数组乱序 arr.sort(function randomsort(a, b) { return ...

  8. 面试中常用排序算法的python实现和性能分析

    这篇是关于排序的,把常见的排序算法和面试中经常提到的一些问题整理了一下.这里面大概有3个需要提到的问题: 虽然专业是数学,但是自己还是比较讨厌繁琐的公式,所以基本上文章所有的逻辑,我都尽可能的用大白话 ...

  9. Python实现8中常用排序算法

    L = [2,6,4,7,9,1,3,5,8] # 1.插入排序 def insert_sort(List): n = len(List) for i in range(1,n): # 得到索引 j ...

随机推荐

  1. html与css命名规范小结

    一.命名规则说明 所有的命名最好都用小写 使用英文命名 给每一个表格和表单加上一个唯一的.结构标记id 给每个图片加上alt标签,优点在于图片发生错误时,alt可以体现给用户 二.相对网页外层重要部分 ...

  2. Android studio 添加引用新建类库

    1.新建一个工程包 2.修改AndroidManifest.xml 将AndroidManifest.xml 修改为 <manifest xmlns:android="http://s ...

  3. 如何用js代码实现图片切换效果

    通过点击按钮,实现图片的隐藏与显现,切换. 实现代码:<style> .a{ width: 300px; height: 300px; border: 1px solid black; } ...

  4. 关于c# winform使用FidderCore.dll 遇到的一些问题,请求支援

    小弟最近再研究winform用fidder抓取包的过程.开始都很顺利,并且成功开启了代理网络.同时手机也设置代理,并且手机可以上网,而且电脑也能抓到手机的请求. 但是遇到两个问题. 1.,这里的关闭代 ...

  5. dubbo之回声测试

    回声测试 回声测试用于检测服务是否可用,回声测试按照正常请求流程执行,能够测试整个调用是否通畅,可用于监控. 所有服务自动实现 EchoService 接口,只需将任意服务引用强制转型为 EchoSe ...

  6. CNN结构:SPP-Net为CNNs添加空间尺度卷积-神经元层

    前几个CNN检测的框架要求网络的图像输入为固定长宽,而SPP-Net在CNN结构中添加了一个实现图像金字塔功能的卷积层SPP层,用于在网络中实现多尺度卷积,由此对应多尺度输入,以此应对图像的缩放变换和 ...

  7. 浅析Python3中的bytes和str类型 (转)

    原文出处:https://www.cnblogs.com/chownjy/p/6625299.html#undefined Python 3最重要的新特性之一是对字符串和二进制数据流做了明确的区分.文 ...

  8. Java 将要上传的文件上传至指定路径代码实现

    代码: /** * 上传文件到指定路径 * @param mFile 要上传的文件 * @param path 指定路径 */ public static void uploadFile(Multip ...

  9. 关于DataGridViewComboBoxColumn的二三事

    近日开发一个基于WinForm的工具,用到了DataGridViewComboBoxColumn. 关于数据: DataGridView的数据源是代码生成的DataTable DataGridView ...

  10. LINUX - getopts

    getopts optionString opt; optionString :所有参数组成的-参数串: opt:从optionString 每次取的参数值: 当optionString用[:]开头, ...