Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6064   Accepted: 3015

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.


The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is
quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.




All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or
(3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.




You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least
three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with
the shortest total length of the corridors.



You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form
a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.




n

x1 y1 z1 r1

x2 y2 z2 r2

...

xn yn zn rn



The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.




The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after
the decimal point. Values are separated by a space character.



Each of x, y, z and r is positive and is less than 100.0.



The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.




Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
/*一个最小生成树问题,prim或者克鲁斯卡尔都可以,题意就是说,空间中有很多细胞
现在让你算一下将这些细胞从表面连起来的最短路径,如果细胞相接触的话就不需要再连,本来我还想过
细胞互相包含的情况,但是没有写进去就过了,可能是题意理解得不好吧,或者就是测试数据太垃圾
一定是这样 0.0||*/
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f
int n,vis[1010];
double map[1010][1010],sum;
double x[1010],y[1010],z[1010],r[1010];
double dis(int i,int j)
{
return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])+(z[i]-z[j])*(z[i]-z[j]));
}
void prim()
{
int i,j,p;
double min;
p=-1;
for(i=0;i<n;i++)
{
min=INF;
for(j=1;j<n;j++)
{
if(map[0][j]<min&&!vis[j])
{
min=map[0][j];
p=j;
}
}
if(min==INF) break;
sum+=map[0][p];
vis[p]=1;
for(j=1;j<n;j++)
{
if(map[0][j]>map[p][j])
map[0][j]=map[p][j];
}
}
}
int main()
{
while(scanf("%d",&n),n)
{
memset(vis,0,sizeof(vis));
sum=0;
memset(map,INF,sizeof(map));
int i,j,k;
for(i=0;i<n;i++)
scanf("%lf%lf%lf%lf",&x[i],&y[i],&z[i],&r[i]);
for(i=0;i<n;i++)
for(j=i+1;j<n;j++)
{
if(dis(i,j)-r[i]-r[j]>0)
map[i][j]=map[j][i]=dis(i,j)-r[i]-r[j];
else map[i][j]=map[j][i]=0;
}
prim();
printf("%.3lf\n",sum);
}
return 0;
}

poj 2031--Building a Space Station(prim)的更多相关文章

  1. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  2. poj 2031 Building a Space Station(prime )

    这个题要交c++, 因为prime的返回值错了,改了一会 题目:http://poj.org/problem?id=2031 题意:就是给出三维坐标系上的一些球的球心坐标和其半径,搭建通路,使得他们能 ...

  3. POJ - 2031 Building a Space Station(计算几何+最小生成树)

    http://poj.org/problem?id=2031 题意 给出三维坐标系下的n个球体,求把它们联通的最小代价. 分析 最小生成树加上一点计算几何.建图,若两球体原本有接触,则边权为0:否则边 ...

  4. poj 2031 Building a Space Station(最小生成树,三维,基础)

    只是坐标变成三维得了,而且要减去两边的半径而已 题目 //最小生成树,只是变成三维的了 #define _CRT_SECURE_NO_WARNINGS #include<stdlib.h> ...

  5. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  6. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

随机推荐

  1. System.DateTime.Now 24小时制。

    this.Label6.Text = "当前时间:" + System.DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss") ...

  2. Java_Web之神奇的Ajax

    为什么使用Ajax? 无刷新:不刷新整个页面,只刷新局部 无刷新的好处 提供类似C/S的交互效果,操作更方面 只更新部分页面,有效利用带宽   什么是Ajax?   XMLHttpRequest常用方 ...

  3. Visual Studio UI Automation 学习(一)

    这几天需要研究自动化测试工具,因为团队开发使用visual studio,所以需要研究一下Visual studio自带的框架. 刚开始安装的时候,没有选自定义安装,所以安装完成后没有找到UI Aut ...

  4. 使用OpenCV画折线图

    使用OpenCV画直方图是一件轻松的事情,画折线图就没有那么Easy了,还是使用一个库吧: GraphUtils 源代码添加入工程 原文链接:http://www.360doc.com/content ...

  5. git解决内容冲突

    内容冲突的冲突处理 两个用户修改了同一个文件的同一块区域,git会报告内容冲突. 解决办法:打开发生冲突的文件,会发现 <<<<<<< HEADtest in ...

  6. 【sqli-labs】 less9 GET - Blind - Time based. - Single Quotes (基于时间的GET单引号盲注)

    加and http://localhost/sqli/Less-9/?id=1' and '1'='1%23 http://localhost/sqli/Less-9/?id=1' and '1'=' ...

  7. TimerTask定时任务

    web.xml <listener> <listener-class>com.sign.listener.NFDFlightDataTaskListener</liste ...

  8. windows 下安装mysql 成功版

    mysql 下载地址 http://dev.mysql.com/downloads/ zip版下载 解压到本地 假设文件保存在C:\mysql-5.7.17-winx64 1.以管理员身份运行cmd. ...

  9. BZOJ 1715: [Usaco2006 Dec]Wormholes 虫洞 DFS版SPFA判负环

    Description John在他的农场中闲逛时发现了许多虫洞.虫洞可以看作一条十分奇特的有向边,并可以使你返回到过去的一个时刻(相对你进入虫洞之前).John的每个农场有M条小路(无向边)连接着N ...

  10. Linux目录与相关配置文件讲解

    linux目录介绍及配置文件详细介绍 重要目录简介 目录名 作用 boot 与电脑启动相关,推荐单独分区. etc 存放配置文件 mnt 一般用来设置挂载点 src.sys.proc 与系统内核相关, ...