链接

Chernobyl’ Eagle on a Roof

题意

引用论文题意:有一堆共 M 个鹰蛋,一位教授想研究这些鹰蛋的坚硬度 E。他是通过不断从一幢 N 层的楼上向下扔鹰蛋来确定 E 的。当鹰蛋从第 E 层楼及以下楼层落下时是不会碎的,但从第(E+1)层楼及以上楼层向下落时会摔碎。如果鹰蛋未摔碎,还可以继续使用;但如果鹰蛋全碎了却仍未确定 E,这显然是一个失败的实验。教授希望实验是成功的。
例如:若鹰蛋从第 1 层楼落下即摔碎,E=0;若鹰蛋从第 N 层楼落下仍未碎,E=N。这里假设所有的鹰蛋都具有相同的坚硬度。给定鹰蛋个数 M 与楼层数 N。
要求最坏情况下确定 E 所需要的最少次数。

做法

论文里用了5种方法,这里不如我们就介绍最优的那种。

定义dp(i,j),表示第i个蛋尝试j次在最坏情况下能确定E的最高楼层数,

每一个蛋一次只能确定一层楼,所以把dp(i,1)初始化为1,假设蛋没碎,每一个蛋最坏情况要扔i次才能确定层数,所以把dp(1,i)初始化为i。

然后状态转移是这样:假设在某一层楼扔下一只蛋,且碎了,则在下面的(j-1)次里,我们要用(i-1)个蛋在下面的楼层中确定 E。为了使 dp(i,j)达到最大,我们当然希望下面的楼层数达到最多,这便是一个子问题,答案为 dp(i-1,j-1);假设蛋没碎,则在后面(j-1)次里,我们要用 i 个蛋在上面的楼层中确定 E,这同样需要楼层数达到最多,便为 dp(i-1,j),然后不管怎样,我们都用了一次。即dp(i,j)=dp(i-1,j-1)+dp(i,j-1)+1。建立新的动态规划模型,从另一个角度重新审视问题,可以更快解决一些dp问题。

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL dp[1010][1010];
int main() {
for(int i = 1; i <= 1000; i++) {
dp[1][i] = i;//一个蛋试i次最坏情况可在i层确定E
dp[i][1] = 1;//一个蛋一次只能确定一层楼
}
for(int i = 2; i <= 1000; i++) {
for(int j = 2; j <= 1000; j++) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1] + 1;
}
}
int n, m;//m 蛋,n 楼层
while(cin >> m >> n, n && m) {
LL ans = -1;
for(int i = 1; i <= 1000; i++) {
if(dp[m][i] >= n) {
ans = i;
break;
}
}
if(ans == -1)
puts("Impossible");
else
cout << ans << endl;
}
return 0;
}

相关论文:《从《鹰蛋》一题浅析对动态规划算法的优化》

Chernobyl’ Eagle on a Roof(鹰蛋坚固度)的更多相关文章

  1. 记忆化搜索(DFS+DP) URAL 1223 Chernobyl’ Eagle on a Roof

    题目传送门 /* 记忆化搜索(DFS+DP):dp[x][y] 表示x个蛋,在y楼扔后所需要的实验次数 ans = min (ans, max (dp[x][y-i], dp[x-1][i-1]) + ...

  2. 1223. Chernobyl’ Eagle on a Roof(dp)&&poj3783

    经典DP n个鹰蛋 m层楼 刚开始是二分想法 不过当数小于二分的那个值 貌似没发判断 dp[i][j] = min(dp[i][j],max(dp[i-1][k-1],dp[i][j-k]) 选择第k ...

  3. URAL 1223. Chernobyl’ Eagle on a Roof

    题目链接 以前做过的一题,URAL数据强点,优化了一下. #include <iostream> #include <cstdio> #include <cstring& ...

  4. What number should I guess next ?——由《鹰蛋》一题引发的思考

    What number should I guess next ? 这篇文章的灵感来源于最近技术部的团建与著名的DP优化<鹰蛋>.记得在一个月前,查到鹰蛋的题解前,我在与同学讨论时,一直试 ...

  5. 高楼扔鸡蛋问题(鹰蛋问题) POJ-3783

    这是一道经典的DP模板题. https://vjudge.net/problem/POJ-3783#author=Herlo 一开始也是不知道咋写,尝试找了很多博客,感觉有点领悟之后写下自己的理解. ...

  6. LeetCode887鸡蛋掉落——dp

    题目 题目链接 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N  共有 N 层楼的建筑.每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去,如果没有碎可以继续使用.你知道存在楼层 F , ...

  7. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  8. ural 1222. Chernobyl’ Eagles

    1222. Chernobyl’ Eagles Time limit: 1.0 secondMemory limit: 64 MB A Chernobyl’ eagle has several hea ...

  9. noip模拟题题解集

    最近做模拟题看到一些好的题及题解. 升格思想: 核电站问题 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 任务:对于给定 ...

随机推荐

  1. 继续聊WPF——进度条

    ProgressBar控件与传统WinForm使用方法完全一样,我们只需关注: Minimum——最小值,默认为0: Maximum——最大值,默认为100. Value——当前值.   关键是它的控 ...

  2. 学习EXTJS6(6)基本功能-工具栏和菜单

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  3. 洛谷 P2728 纺车的轮子 Spinning Wheels

    P2728 纺车的轮子 Spinning Wheels 题目背景 一架纺车有五个纺轮(也就是五个同心圆),这五个不透明的轮子边缘上都有一些缺口.这些缺口必须被迅速而准确地排列好.每个轮子都有一个起始标 ...

  4. Linux查看文件内容命令:more(转)

    Linux more命令类似cat ,不过会以一页一页的形式显示,更方便使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,按b键就会往回(back)一页显示,而且还有搜寻字串的功 ...

  5. HDU 1515

    简单题,直接用STACK模拟整个过程. 模拟出栈时,应注意保护现场,等到递归完成后返回. #include <iostream> #include <string.h> #in ...

  6. 【转载】linux中shell命令test用法和举例

    test 命令最短的定义可能是评估一个表达式:如果条件为真,则返回一个 0 值.如果表达式不为真,则返回一个大于 0 的值 — 也可以将其称为假值.检查最后所执行命令的状态的最简便方法是使用 $? 值 ...

  7. POJ 3281(Dining-网络流拆点)[Template:网络流dinic]

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbmlrZTBnb29k/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  8. ubuntu查看文件大小

    使用linux命令df 和du,df 但是df只能查看一级文件夹大小.使用比例.档案系统及其挂入点,但对文件却无能为力.du可以查看文件及文件夹的大小.所以基本上是两者配合使用. 一 df h参数, ...

  9. ActionFilterAttribute

    https://msdn.microsoft.com/en-us/library/system.web.mvc.actionfilterattribute.onactionexecuting(v=vs ...

  10. elasticsearch indices.recovery 流程分析(索引的_open操作也会触发recovery)——主分片recovery主要是从translog里恢复之前未写完的index,副分片recovery主要是从主分片copy segment和translog来进行恢复

    摘自:https://www.easyice.cn/archives/231 elasticsearch indices.recovery 流程分析与速度优化 目录 [隐藏] 主分片恢复流程 副本分片 ...