链接

Chernobyl’ Eagle on a Roof

题意

引用论文题意:有一堆共 M 个鹰蛋,一位教授想研究这些鹰蛋的坚硬度 E。他是通过不断从一幢 N 层的楼上向下扔鹰蛋来确定 E 的。当鹰蛋从第 E 层楼及以下楼层落下时是不会碎的,但从第(E+1)层楼及以上楼层向下落时会摔碎。如果鹰蛋未摔碎,还可以继续使用;但如果鹰蛋全碎了却仍未确定 E,这显然是一个失败的实验。教授希望实验是成功的。
例如:若鹰蛋从第 1 层楼落下即摔碎,E=0;若鹰蛋从第 N 层楼落下仍未碎,E=N。这里假设所有的鹰蛋都具有相同的坚硬度。给定鹰蛋个数 M 与楼层数 N。
要求最坏情况下确定 E 所需要的最少次数。

做法

论文里用了5种方法,这里不如我们就介绍最优的那种。

定义dp(i,j),表示第i个蛋尝试j次在最坏情况下能确定E的最高楼层数,

每一个蛋一次只能确定一层楼,所以把dp(i,1)初始化为1,假设蛋没碎,每一个蛋最坏情况要扔i次才能确定层数,所以把dp(1,i)初始化为i。

然后状态转移是这样:假设在某一层楼扔下一只蛋,且碎了,则在下面的(j-1)次里,我们要用(i-1)个蛋在下面的楼层中确定 E。为了使 dp(i,j)达到最大,我们当然希望下面的楼层数达到最多,这便是一个子问题,答案为 dp(i-1,j-1);假设蛋没碎,则在后面(j-1)次里,我们要用 i 个蛋在上面的楼层中确定 E,这同样需要楼层数达到最多,便为 dp(i-1,j),然后不管怎样,我们都用了一次。即dp(i,j)=dp(i-1,j-1)+dp(i,j-1)+1。建立新的动态规划模型,从另一个角度重新审视问题,可以更快解决一些dp问题。

代码

#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL dp[1010][1010];
int main() {
for(int i = 1; i <= 1000; i++) {
dp[1][i] = i;//一个蛋试i次最坏情况可在i层确定E
dp[i][1] = 1;//一个蛋一次只能确定一层楼
}
for(int i = 2; i <= 1000; i++) {
for(int j = 2; j <= 1000; j++) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1] + 1;
}
}
int n, m;//m 蛋,n 楼层
while(cin >> m >> n, n && m) {
LL ans = -1;
for(int i = 1; i <= 1000; i++) {
if(dp[m][i] >= n) {
ans = i;
break;
}
}
if(ans == -1)
puts("Impossible");
else
cout << ans << endl;
}
return 0;
}

相关论文:《从《鹰蛋》一题浅析对动态规划算法的优化》

Chernobyl’ Eagle on a Roof(鹰蛋坚固度)的更多相关文章

  1. 记忆化搜索(DFS+DP) URAL 1223 Chernobyl’ Eagle on a Roof

    题目传送门 /* 记忆化搜索(DFS+DP):dp[x][y] 表示x个蛋,在y楼扔后所需要的实验次数 ans = min (ans, max (dp[x][y-i], dp[x-1][i-1]) + ...

  2. 1223. Chernobyl’ Eagle on a Roof(dp)&&poj3783

    经典DP n个鹰蛋 m层楼 刚开始是二分想法 不过当数小于二分的那个值 貌似没发判断 dp[i][j] = min(dp[i][j],max(dp[i-1][k-1],dp[i][j-k]) 选择第k ...

  3. URAL 1223. Chernobyl’ Eagle on a Roof

    题目链接 以前做过的一题,URAL数据强点,优化了一下. #include <iostream> #include <cstdio> #include <cstring& ...

  4. What number should I guess next ?——由《鹰蛋》一题引发的思考

    What number should I guess next ? 这篇文章的灵感来源于最近技术部的团建与著名的DP优化<鹰蛋>.记得在一个月前,查到鹰蛋的题解前,我在与同学讨论时,一直试 ...

  5. 高楼扔鸡蛋问题(鹰蛋问题) POJ-3783

    这是一道经典的DP模板题. https://vjudge.net/problem/POJ-3783#author=Herlo 一开始也是不知道咋写,尝试找了很多博客,感觉有点领悟之后写下自己的理解. ...

  6. LeetCode887鸡蛋掉落——dp

    题目 题目链接 你将获得 K 个鸡蛋,并可以使用一栋从 1 到 N  共有 N 层楼的建筑.每个蛋的功能都是一样的,如果一个蛋碎了,你就不能再把它掉下去,如果没有碎可以继续使用.你知道存在楼层 F , ...

  7. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  8. ural 1222. Chernobyl’ Eagles

    1222. Chernobyl’ Eagles Time limit: 1.0 secondMemory limit: 64 MB A Chernobyl’ eagle has several hea ...

  9. noip模拟题题解集

    最近做模拟题看到一些好的题及题解. 升格思想: 核电站问题 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 任务:对于给定 ...

随机推荐

  1. CSS学习笔记之CSS3新特性

    目录 1.边框 2.背景 3.文本 4.字体 5.转换 6.过渡 7.动画 8.多列 9.自定义尺寸 CSS 用于控制网页的样式和布局,而 CSS3 是最新的 CSS 标准,这篇文章将着重介绍 CSS ...

  2. 1. 构建第一个SpringBoot工程

    1.File -  New - Module 2.选项的是Spring Initializr(官方的构建插件,需要联网) ,一定要选择jdk 3.填写项目基本信息 Group:组织ID,一般分为多个段 ...

  3. 韩国 DBA 博客

    http://mysqldba.tistory.com/ http://cafe.naver.com/mysqlpg http://cafe.naver.com/realmysql http://wi ...

  4. LeetCode之RemoveElement

    题目: Given an array and a value, remove all instances of that value in place and return the new lengt ...

  5. 一次完整的http事务

    一次完整的http事务 https://www.processon.com/view/link/56c6679ce4b0f0c4285e69c0 规范把 HTTP 请求分为三个部分:状态行.请求头.消 ...

  6. Using KafkaBolt to write to a kafka topic

    https://community.hortonworks.com/questions/27187/using-kafkabolt-to-write-to-a-kafka-topic.html --- ...

  7. hdu 4865 Peter&#39;s Hobby(2014 多校联合第一场 E)

    Peter's Hobby Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  8. 号外:java基础班教材永久免费 报名就送

    以前万人疯抢的成都传智播客java基础班教材,今日免费赠送,你hold的住吗? 由成都传智播客传道授业解惑的诸位老师,精心制作的教材.如今免费赠送,你能接的住吗? 书是交融感情.获得知识.传承经验的重 ...

  9. 邮箱smtpserver及port收集

    网易   163邮箱 POP3:pop.126.com SMTP:smtp.126.com SMTPport号:25   126邮箱 POP3:pop.126.com SMTP:smtp.126.co ...

  10. 【SQLSERVER】MD5注意事项

    sql中使用MD5加密是很常见的事情,但是不知道注意点的人还是会即便是拷贝网络上的写法也是会出现错误的. 举个例子简单说明: 由上图我们可以发现相同的字符串但是得到的MD5加密的字符却是不相同的,那么 ...