题意:

给你n和k,表示有n个数,c1到cn,然后让你求一个数x,可以告诉你x%ci的值,问你是否可以唯一确定一个x%k的值

题解:

反证:

假设有两个x1,x2同时是解,则对于所有ci,x1%ci==x2%ci&&x1%k!=x2%k,及(x1-x2)%ci==0&&(x1-x2)%k!=0,

及x1-x2==nlcm(ci)(n属于1到无穷大),所以对于所有的n,nlcm(ci)%k!=0,显而易见所有的nlcm%k!=0的话,则lcm%k!=0,

所以可以得出存在两个解的话,lcm%k!=0

所以我们只要判断lcm%k是否等于零即可

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
const int mod = 1e9+;
const int maxn = 1e6+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int n,k;
ll c[maxn];
bool ok(){
ll ans = c[];
rep(i,,n+) ans = lcm(ans,c[i]) % k;
ans %= k;
return !ans;
}
int main(){
scanf("%d%d",&n,&k);
rep(i,,n+) scanf("%lld",&c[i]);
puts(ok()?"Yes":"No");
return ;
}

codeforces 688D的更多相关文章

  1. codeforces 688D D. Remainders Game(中国剩余定理)

    题目链接: D. Remainders Game time limit per test 1 second memory limit per test 256 megabytes input stan ...

  2. Codeforces Round #360 div2

    Problem_A(CodeForces 688A): 题意: 有d天, n个人.如果这n个人同时出现, 那么你就赢不了他们所有的人, 除此之外, 你可以赢他们所有到场的人. 到场人数为0也算赢. 现 ...

  3. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  4. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  5. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  6. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  7. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  8. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  9. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

随机推荐

  1. 虚拟机: 虚拟机win7的激活方式(底层操作系统 为 win10) ===用windows loader

    激活方式:  需要用windows loader

  2. [HAOI2007]理想的正方形 单调队列 暴力

    Code: #include<cstdio> #include<queue> #include<algorithm> using namespace std; #d ...

  3. bzoj 2456: mode 思维题 好题

    题目描述: 给你一个 $n$ 个数的数列,其中某个数出现了超过 n div 2 次即众数,请你找出那个数.空间大小:1mb 题解:显然,我们是不能开任何数组的,此题专卡空间.然而我们要求的东西也十分简 ...

  4. JDK工具(一)–Java编译器javac

    1.概述    javac.exe: Java编译器,将Java源代码转换成字节码. 2.用法    javac <选项> <源文件> (使用过程中发现,javac <源 ...

  5. hiho 1055 刷油漆 树形dp

    一个简单的树上的背包问题. 代码: #include <iostream> #include <cstdio> #include <cstring> #includ ...

  6. 一、 Hbase特性 3v特性,Volume(量级) Varity(种类) Velocity(速度)

    HBase中表的特点 大: 一个表可以由百亿行,上百万列(列多时,插入变慢) 面向列:面向列(族)的存储和权限控制,列(族)独立检索 稀疏:对于为空(null) 的列,并不占用存储空间,因此表可以设计 ...

  7. django-xadmin使用之配置页眉页脚

    环境:xadmin-for-python3 python3.5.2 django1.9.12 在模块的adminx.py文件中增加以下代码即可: # TIP 定义页头页脚 class GlobalSe ...

  8. Memcache启动&amp;存储原理&amp;集群

    一. windows下安装启动 首先将memcache的bin文件夹增加到Path环境变量中.方便后面使用命令: 然后运行 memcached –dinstall 命令安装memcache的服务: 然 ...

  9. 记录遇到的ios下的bugs[废弃]

    请看又一次排版后的文章 新地址

  10. JAVA 解析复杂的json字符串

    转自:https://blog.csdn.net/lovelovelovelovelo/article/details/73614473String parameter = { success : 0 ...