题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。

典型的解法记住空间复杂度要在O(n)

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> paths(n,1);
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
paths[j]+=paths[j-1];
return paths[n-1];
}
};

另外一种是採用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,

class Solution {
public:
int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
int large = max(m,n) -1;
int small = min(m,n) -1;
if (large == 0 || small == 0) return 1;
long int numerator = 1, denominator = 1;
for (int i=1; i<=small; ++i){
numerator *= large + i;
denominator *= i;
}
return numerator/denominator;
}
};

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里仅仅是加了障碍物而已。在障碍物的位子是0,

还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<int> paths(obstacleGrid[0].size(),0);
paths[0]=!obstacleGrid[0][0];
for(int i=0;i<obstacleGrid.size();++i)
for(int j=0;j<obstacleGrid[0].size();++j)
if(obstacleGrid[i][j]==1)
paths[j]=0;
else if(j-1>=0)
paths[j]+=paths[j-1];
return paths[obstacleGrid[0].size()-1];
}
};

Unique Paths I,II的更多相关文章

  1. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  2. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  3. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  5. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  6. 61. Unique Paths && Unique Paths II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  7. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  8. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  9. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

随机推荐

  1. Fckeditor使用方法

    下载地址 http://ckeditor.com/download <?php require('../fckeditor/fckeditor.php'); ?> <html> ...

  2. mysql远程服务器访问数据库

    创建一个MySQL用户,并设置可以远程访问 grant usage on *.* to 'fred'@'localhost' identified by 'fred';//创建用户fred密码ferd ...

  3. cocos2d-js 添加广告

    http://www.cocoachina.com/bbs/read.php?tid=225655

  4. Java系列学习(一)-JDK下载与安装

    1.Java语言平台版本 J2SE:Java 2 Platform Standard Edition,java平台标准版 J2ME:Java 2 Platform Micro Edition,java ...

  5. 笨拙而诡异的 Oracle(之二)

    有一张表,很多数据:   想取某个月的数据.初始的想法很简单,根据日期(RQ)形成条件即可:  符合条件的记录数是 129835,但耗时太长:14.515 秒(RQ字段是做过索引的)!直观的反应是 O ...

  6. Java_注解之二

    在上一次的注解案例里面配置注解的同时,也添加了一对多(@OneToMany)的关系在里面. 本次将补充上次的缺失:其他三种关联方式的配置. 为了简化配置的复杂度   在此案例中Emp和Dept并不是唯 ...

  7. 12.Nodes

    Nodes(节点) Animation(动画)       KeyframeAnimation 逐帧动画,该节点中包含了所有绑定属性的动画逻辑   Animation Group 逐帧动画分组   S ...

  8. [ JSOI 2015 ] Salesman

    \(\\\) \(Description\) 给出一棵以\(1\)为根的\(N\)个节点的树,开始的时候你在\(1\)号节点. 除了\(1\)号节点以外,每个点都有访问次数限制\(t_i\),即到达该 ...

  9. CSS布局——三栏布局

    说到三栏布局,很多都会提到圣杯布局和双飞翼布局这两个经典的三栏布局方式.于是,我在网上搜了一些相关资料,阅读并跟着代码敲了一遍,发现在处理三栏布局上,他们采用的都是两边栏固定,中间栏自适应的策略.在处 ...

  10. APIshop精选接口助力双十一电商业务

    距离2018年双11的购物盛典已经不到一个月了,各大电商之间的战役已经悄然打响,今年的双11仍会是一场电商鏖战,想必又会打破2017年双11近2540亿的全网成交总额记录. 据统计,去年双11全天共产 ...