题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。

典型的解法记住空间复杂度要在O(n)

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> paths(n,1);
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
paths[j]+=paths[j-1];
return paths[n-1];
}
};

另外一种是採用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,

class Solution {
public:
int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
int large = max(m,n) -1;
int small = min(m,n) -1;
if (large == 0 || small == 0) return 1;
long int numerator = 1, denominator = 1;
for (int i=1; i<=small; ++i){
numerator *= large + i;
denominator *= i;
}
return numerator/denominator;
}
};

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里仅仅是加了障碍物而已。在障碍物的位子是0,

还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<int> paths(obstacleGrid[0].size(),0);
paths[0]=!obstacleGrid[0][0];
for(int i=0;i<obstacleGrid.size();++i)
for(int j=0;j<obstacleGrid[0].size();++j)
if(obstacleGrid[i][j]==1)
paths[j]=0;
else if(j-1>=0)
paths[j]+=paths[j-1];
return paths[obstacleGrid[0].size()-1];
}
};

Unique Paths I,II的更多相关文章

  1. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  2. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  3. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  5. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  6. 61. Unique Paths && Unique Paths II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  7. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  8. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  9. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

随机推荐

  1. 发布 Windows 服务

    1. 如何新建 Windows 服务 打开VS,“新建项目”-->“windows 桌面”-->“windows 服务”: http://www.cnblogs.com/sorex/arc ...

  2. ACM_栈的压入、弹出序列

    栈的压入.弹出序列 Time Limit: 2000/1000ms (Java/Others) Problem Description: 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列 ...

  3. css为什么叫层叠样式表

    ------------------------------------------------------------------------------------ 层叠就是浏览器对多个样式来源进 ...

  4. [转]Linux finger命令

    转自:http://os.51cto.com/art/201003/186354.htm Linux finger命令是系统管理员的必备命令之一,他可以清楚的告诉管理员有多少用户在同时使用他所管理的L ...

  5. Python随笔-字符串

    函数title.lower.upper. ct = "hello WORLD" print(ct.title()) #title 以首字母大写的方式显示每个单词 print(ct. ...

  6. drupal 8——图片组(list)在前台的显示顺序在登录状态和非登录状态不同

    问题描述:该页面是通过view来输出的,然而,登录状态下其页面中的图片组输出顺序是乱序的,而非登录状态下则根据id值升序输出. 原因:在原view配置页面中,没有配置默认的排序字段 解决方案:在vie ...

  7. 深入浅出的 SQL Server 查询优化

    目前网络数据库的应用已经成为最为广泛的应用之一了,并且关于数据库的安全性,性能都是企业最为关心的事情.数据库渐渐成为企业的命脉,优化查询就解决了每个关于数据库应用的性能问题,在这里microsoft ...

  8. SQl基本操作——try catch

    begin try ... end try begin catch ... end catch

  9. 【译】x86程序员手册18-6.3.1描述符保存保护参数

    6.3 Segment-Level Protection 段级保护 All five aspects of protection apply to segment translation: 段转换时会 ...

  10. python 获取本机环境信息

    一.函数 1.socket.gethostname():不带任何参数,返回一个字符串(主机名),通常不完整.比如csm.example.com 只会返回csm 2.socket.getfqdn():带 ...