题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。

典型的解法记住空间复杂度要在O(n)

  1. class Solution {
  2. public:
  3. int uniquePaths(int m, int n) {
  4. vector<int> paths(n,1);
  5. for(int i=1;i<m;i++)
  6. for(int j=1;j<n;j++)
  7. paths[j]+=paths[j-1];
  8. return paths[n-1];
  9. }
  10. };

另外一种是採用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,

  1. class Solution {
  2. public:
  3. int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
  4. int large = max(m,n) -1;
  5. int small = min(m,n) -1;
  6. if (large == 0 || small == 0) return 1;
  7. long int numerator = 1, denominator = 1;
  8. for (int i=1; i<=small; ++i){
  9. numerator *= large + i;
  10. denominator *= i;
  11. }
  12. return numerator/denominator;
  13. }
  14. };

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

  1. [
  2. [0,0,0],
  3. [0,1,0],
  4. [0,0,0]
  5. ]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里仅仅是加了障碍物而已。在障碍物的位子是0,

还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;

  1. class Solution {
  2. public:
  3. int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
  4. vector<int> paths(obstacleGrid[0].size(),0);
  5. paths[0]=!obstacleGrid[0][0];
  6. for(int i=0;i<obstacleGrid.size();++i)
  7. for(int j=0;j<obstacleGrid[0].size();++j)
  8. if(obstacleGrid[i][j]==1)
  9. paths[j]=0;
  10. else if(j-1>=0)
  11. paths[j]+=paths[j-1];
  12. return paths[obstacleGrid[0].size()-1];
  13. }
  14. };

Unique Paths I,II的更多相关文章

  1. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  2. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  3. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  5. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  6. 61. Unique Paths && Unique Paths II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  7. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  8. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  9. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

随机推荐

  1. Laravel5.1学习笔记13 系统架构5 Contract

    Contract 简介 为什么要用 Contract? Contract 参考 如何使用 Contract 简介 Laravel 中的 Contract 是一组定义了框架核心服务的接口.例如,Illu ...

  2. P1538 迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

  3. 完整版本的停车场管理系统源代码带服务端+手机android客户端

    该源码是停车场管理软件附带源代码 J2EE服务端+android客户端,也是一套停车场管理车辆进出的管理软,喜欢的朋友可以看看吧. 应用的后台管理主要功能介绍:1  机构管理 ,机构有从属管理< ...

  4. 初学者Android studio安装

    学习过java基础,最近趁着大量课余时间想学习Android开发.百度很多资料Android studio,由Google开发的开发工具,那就不需要再多说.对于初学者的我来说,一定足够用了.此文主要介 ...

  5. eclipse整合maven下载jar包速度慢问题解决

    引用:http://blog.csdn.net/u010154380/article/details/70339538 开发过程中在pom.xml中添加pom的时候,默认是需要从中央仓库中下载,但是下 ...

  6. PHP开发之旅-表单验证

    一.创建表单 <form name = "login" method = "post" action="contact.php?action=l ...

  7. Dispatch Queues 线程池

    Dispatch Queues Dispatch queues are a C-based mechanism for executing custom tasks. A dispatch queue ...

  8. Python 之__slots__的作用

    # 注意:__slots__ 用来限制当前类的实例属性的,如:name.age才可被使用,添加其他的属性则报错 # 不会限制继承类的属性 class Person(): __slots__ = (&q ...

  9. Sybase_ASA 字符串拼接

    列转行并拼接字符串,使用LIST函数 SELECT LIST(T.NAME,',') FROM TAB_DEMO T;

  10. img、a标签的使用

    <!doctype html><html><head><meta charset="utf-8"><title>无标题文 ...