题目来自于:https://leetcode.com/problems/unique-paths/

:https://leetcode.com/problems/unique-paths-ii/

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

这道题目就是典型的动态规划问题。之所以会写博客也是由于被网上的第二种算法吸引了。

典型的解法记住空间复杂度要在O(n)

class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> paths(n,1);
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
paths[j]+=paths[j-1];
return paths[n-1];
}
};

另外一种是採用排列组合的方法来解答的

我们从左上角走到右下角一共要(m-1)+(n-1)步而当中我们能够选择(m-1)+(n-1)随意的(m-1)步向右,或者是(n-1)步向下。所以问题的答案就是Ian单的

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhvdXllbGlodWE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

这样的解法的缺点是可能在m。n取较大的数值时候无法储存。所以此处我们採用long int,

class Solution {
public:
int uniquePaths(int m, int n) {// (m-1 + n-1)! / ((m-1)! * (n-1)!)
int large = max(m,n) -1;
int small = min(m,n) -1;
if (large == 0 || small == 0) return 1;
long int numerator = 1, denominator = 1;
for (int i=1; i<=small; ++i){
numerator *= large + i;
denominator *= i;
}
return numerator/denominator;
}
};

Unique Paths II

Total Accepted: 35700 Total
Submissions: 127653My Submissions

Question
 Solution 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively
in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

这里仅仅是加了障碍物而已。在障碍物的位子是0,

还有初始化仅仅能初始化第一个位子即起点。假设起点不是障碍物则为1,否则是0;

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<int> paths(obstacleGrid[0].size(),0);
paths[0]=!obstacleGrid[0][0];
for(int i=0;i<obstacleGrid.size();++i)
for(int j=0;j<obstacleGrid[0].size();++j)
if(obstacleGrid[i][j]==1)
paths[j]=0;
else if(j-1>=0)
paths[j]+=paths[j-1];
return paths[obstacleGrid[0].size()-1];
}
};

Unique Paths I,II的更多相关文章

  1. LeetCode:Unique Paths I II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  2. LeetCode: Unique Paths I & II & Minimum Path Sum

    Title: https://leetcode.com/problems/unique-paths/ A robot is located at the top-left corner of a m  ...

  3. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  4. 62. Unique Paths && 63 Unique Paths II

    https://leetcode.com/problems/unique-paths/ 这道题,不利用动态规划基本上规模变大会运行超时,下面自己写得这段代码,直接暴力破解,只能应付小规模的情形,当23 ...

  5. 【leetcode】Unique Paths II

    Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...

  6. 61. Unique Paths && Unique Paths II

    Unique Paths A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagra ...

  7. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  8. 【LeetCode练习题】Unique Paths II

    Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to ...

  9. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

随机推荐

  1. Zookeeper概念学习系列之zookeeper的角色

    详细,见如下图 1.领导者(leader) : 负责进行投票的发起和决议,更新系统状态. 2.学习者(learner): 包括跟随者(follower)和观察者(observer). 跟随者(foll ...

  2. MVC系列学习(十二)-服务端的验证

    在前一讲,提到过,客户端的东西永远可以造假,所以我们还要在服务端进行验证 注意:先加载表单,后添加js文件,才能有效:而先加载js,后添加表单,是没有效果的 1.视图与Model中的代码如下 2.一张 ...

  3. [转]【C/C++】Linux下使用system()函数一定要谨慎

    曾经的曾经,被system()函数折磨过,之所以这样,是因为对system()函数了解不够深入.只是简单的知道用这个函数执行一个系统命令,这远远不够,它的返回值.它所执行命令的返回值以及命令执行失败原 ...

  4. Android的HttpUrlConnection类的GET和POST请求

    /** * get方法使用 */ private void httpGet() { new Thread() { @Override public void run() { //此处的LOGIN是请求 ...

  5. CSS——text-indent

    在h1标签里套入a标签并写上文字,有利于seo,但是文字如何隐藏呢?一般都是a标签变成内联块并首行缩进为负值. <!DOCTYPE html> <html lang="en ...

  6. html——meta标签、link标签

    <meta> 元素可提供有关页面的元信息(meta-information),比如针对搜索引擎和更新频度的描述和关键词. <meta> 标签位于文档的头部,不包含任何内容.&l ...

  7. java攻城狮之路--复习xml&dom_pull编程续

    本章节我们要学习XML三种解析方式: 1.JAXP DOM 解析2.JAXP SAX 解析3.XML PULL 进行 STAX 解析 XML 技术主要企业应用1.存储和传输数据 2.作为框架的配置文件 ...

  8. android studio 控件提示大写

    方法一: 在第一行找到File进入找到setting,找到code completion 右侧复选框 选择-->None—->ok 方法二:<item name="andr ...

  9. 将vim的UltiSnips的快捷键彻底从tab键中分离

    在我之前的<<vim之补全1>>和<<vim之补全2>>中曾经成功的将vim的supertab和UltiSnips共用一个tab键, 这样做的优点的两种 ...

  10. 14、Scala类型参数

    1.泛型类 2.泛型函数 3.上边界Bounds 4.下边界Bounds 5.View Bounds 6.Context Bounds 7.Manifest Context Bounds 8.协变和逆 ...