先上题目:

Longest Common Substring

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4010    Accepted Submission(s): 1510

Problem Description
Given two strings, you have to tell the length of the Longest Common Substring of them.

For example:
str1 = banana
str2 = cianaic

So the Longest Common Substring is "ana", and the length is 3.

 
Input
The input contains several test cases. Each test case contains two strings, each string will have at most 100000 characters. All the characters are in lower-case.

Process to the end of file.

 
Output
For each test case, you have to tell the length of the Longest Common Substring of them.
 
Sample Input
banana
cianaic
 
Sample Output
3
 
  题意:给出两个串,问你这两个串的最长公共子串的长度是多少。
  后缀数组入门题。首先,不得不承认,现在我的水平只可以套一下模板,通过模板我们可以求出sa[],rank[],height[]三个数组。
  对于这里的字符串,我们是从0~n-1。
  sa[i]指的是字典序排第i的后缀的下标是什么,rank[i]指的是原串中第i个后缀(就是从第i个字符开始到末尾的字符串)在后缀数组中排第几。height[i]表示后缀数组中第i个后缀和第i-1一个后缀的最长公共前缀的长度是多少(其中height[0]=0)。
  这里的做法是首先将两个字符串连接起来,在连接处加一个连接符(没在这两个字符串中出现过的字符即可),然后求出height[],再扫描height[],寻找某个同时符合以下要求的值:①比最大值还要大,②suffex(sa[i])和suffex(sa[i-1])分属于两个不同的字符串。这里需要注意每个数组的长度足够。
 
上代码:
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#define MAX 100002
using namespace std; char s[(MAX<<)],b[MAX];
int sa[MAX<<],rank[MAX<<],height[MAX<<],t[MAX<<],t2[MAX<<],c[MAX<<],n,li;
int f[(MAX<<)]; void build_sa(int m){
int i,*x=t,*y=t2;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[i]=s[i]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[i]]]=i;
for(int k=;k<=n;k<<=){
int p=;
for(i=n-k;i<n;i++) y[p++]=i;
for(i=;i<n;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(i=;i<m;i++) c[i]=;
for(i=;i<n;i++) c[x[y[i]]]++;
for(i=;i<m;i++) c[i]+=c[i-];
for(i=n-;i>=;i--) sa[--c[x[y[i]]]]=y[i];
swap(x,y);
p=; x[sa[]]=;
for(i=;i<n;i++){
x[sa[i]]=y[sa[i-]]==y[sa[i]]&&y[sa[i-]+k]==y[sa[i]+k] ? p- : p++;
}
if(p>=n) break;
m=p;
}
for(i=;i<n;i++) rank[sa[i]]=i;
} void getHeight(){
int i,j,k=;
for(i=;i<n;i++){
if(k) k--;
j=sa[rank[i]-];
while(s[i+k]==s[j+k]) k++;
height[rank[i]]=k;
}
} int main()
{
int maxn;
//freopen("data.txt","r",stdin);
while(scanf("%s %s",s,b)!=EOF){
strcat(s,"&");
li=strlen(s);
for(int i=;i<li-;i++) f[i]=;
strcat(s,b);
f[li-]=;
n=strlen(s);
for(int i=li;i<n;i++) f[i]=-;
build_sa();
getHeight();
maxn=;
for(int i=;i<n;i++){
if(maxn<height[i] && f[sa[i-]]*f[sa[i]]<){
maxn=height[i];
}
}
printf("%d\n",maxn);
}
return ;
}

/*1403*/

HDU - 1403 - Longest Common Substring的更多相关文章

  1. hdu 1403 Longest Common Substring(最长公共子字符串)(后缀数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 Longest Common Substring Time Limit: 8000/4000 MS (Ja ...

  2. HDU 1403 Longest Common Substring(后缀自动机——附讲解 or 后缀数组)

    Description Given two strings, you have to tell the length of the Longest Common Substring of them. ...

  3. HDU 1403 Longest Common Substring(最长公共子串)

    http://acm.hdu.edu.cn/showproblem.php?pid=1403 题意:给出两个字符串,求最长公共子串的长度. 思路: 刚开始学后缀数组,确实感觉很难,但是这东西很强大,所 ...

  4. HDU 1403 Longest Common Substring(后缀数组,最长公共子串)

    hdu题目 poj题目 参考了 罗穗骞的论文<后缀数组——处理字符串的有力工具> 题意:求两个序列的最长公共子串 思路:后缀数组经典题目之一(模版题) //后缀数组sa:将s的n个后缀从小 ...

  5. POJ 2774 Long Long Message&&HDU 1403 Longest Common Substring&&COJ 1203

    后缀数组的买1送2题... HDU的那题数据实在是太水了,后来才发现在COJ和POJ上都是WA..原因在一点:在建立sa数组的时候里面的n应该是字符串长度+1....不懂可以去看罗大神的论文... 就 ...

  6. hdu 1403 Longest Common Substring 后缀数组 模板题

    题目链接 题意 问两个字符串的最长公共子串. 思路 加一个特殊字符然后拼接起来,求得后缀数组与\(height\)数组.扫描一遍即得答案,注意判断起始点是否分别在两个串内. Code #include ...

  7. 【HDOJ】1403 Longest Common Substring

    后缀数组2倍增可解. #include <cstdio> #include <cstring> #include <cstdlib> #define MAXM 28 ...

  8. hdu1403 Longest Common Substring

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1403 题目: Longest Common Substring Time Limit: 800 ...

  9. SPOJ LCS2 - Longest Common Substring II

    LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...

随机推荐

  1. [python基础] csv.wirterow()报错UnicodeEncodeError

    python在安装时,默认的编码是ascii,当程序中出现非ascii编码时,python的处理常常会报这样的错,python没办法处理非ascii编码的,此时需要自己设置将python的默认编码,一 ...

  2. 回顾2017Java 小结

    一.Java语言最流行 最近,调查结果已公布:Java 被评为最流行的语言,JavaScript 是最常用的语言,而 Go 被认为是最有前途的语言,Python 是最多人想去尝试的语言. https: ...

  3. LVS上DR和NAT模式的缺陷

    引言 相信一般的小公司用的最多的还是DR和NAT模式,关于DR和NAT模式的原理请看看下图,我们先从lvs的DR和NAT模式特性聊聊一些问题. 问题1.lvs的DR模式和NAT模式核心缺陷有哪些? D ...

  4. 当下较热web前端技术汇总

    Web前段技术发展很快,主流技术日新月异,想想自己刚毕业那会用的asp技术,现在已经很少有主流网站在使用了.再到后来的J2EE框架,然后SpringMVC大行其道,但是最近各种js框架被广为传播,Ht ...

  5. akka设计模式系列-基础模式

    本文介绍akka的基本使用方法,由于属于基础功能,想不出一个很高大上的名称,此处就以基础模式命名.下文会介绍actor的使用方法,及其优劣点. class SimpleActor(name:Strin ...

  6. gerrit项目配置

    1. 相关约定说明: 1.1 gerrit服务器ip地址:192.168.130.10 1.2 gerrit服务器端用户名:gerrit 1.3 gerrit用户端管理员:admin 1.4 ssh端 ...

  7. fcc html5 css 练习2

    <form action="/submit-cat-photo" >action属性的值指定了表单提交到服务器的地址 <input type="text ...

  8. [转][IPC通信]基于管道的popen和pclose函数

    标准I/O函数库提供了popen函数,它启动另外一个进程去执行一个shell命令行. 这里我们称调用popen的进程为父进程,由popen启动的进程称为子进程. popen函数还创建一个管道用于父子进 ...

  9. 【译】x86程序员手册20-6.3.4门描述符守卫程序入口

    6.3.4 Gate Descriptors Guard Procedure Entry Points 门描述符守卫程序入口 To provide protection for control tra ...

  10. Js配置资料下载

    1.使用windows.loaction.href链接下载: 此种下载在本页打开,eg:windows.location.href = http://www.xxx.xx/aa.apk; 2.使用wi ...