基于opencv的手写数字字符识别
摘要
本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作。
程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成。并在Windows xp-32位系统下测试可用。
主流程图:
细化流程图:
预处理的过程就是找到图像的ROI区域的过程,如下图所示:
首先找到数字的边界框,然后大小归一化数字图片,主要流程如下图所示:
主要代码:
IplImagepreprocessing(IplImage*imgSrc,intnew_width,intnew_height)
{
IplImage* result;
IplImage* scaledResult;
CvMat data;
CvMat dataA;
CvRect
bb;//bounding box
CvRect
bba;//boundinb box maintain aspect ratio
//Find bounding box找到边界框
bb=findBB(imgSrc);
cvGetSubRect(imgSrc, &data,cvRect(bb.x,bb.y,bb.width,bb.height));
int size=(bb.width>bb.height)?bb.width:bb.height;
result=cvCreateImage(
cvSize( size, size ), 8, 1 );
cvSet(result,CV_RGB(255,255,255),NULL);
//将图像放中间,大小归一化
int x=(int)floor((float)(size-bb.width)/2.0f);
int y=(int)floor((float)(size-bb.height)/2.0f);
cvGetSubRect(result, &dataA,cvRect(x,y,bb.width,bb.height));
cvCopy(&data, &dataA,NULL);
//Scale result
scaledResult=cvCreateImage(
cvSize( new_width,
new_height ), 8, 1 );
cvResize(result,
scaledResult, CV_INTER_NN);
//Return processed data
return *scaledResult;//直接返回处理后的图片
}
2. 特征提取
在拿到ROI图像减少了信息量之后,就可以直接用图片作为向量矩阵作为输入:
voidbasicOCR::getData()
{
IplImage* src_image;
IplImage prs_image;
CvMat row,data;
char file[255];
int i,j;
for(i =0; i<classes;i++)//总共10个数字
{
for(
j = 0; j<train_samples;j++)//每个数字50个样本
{
//加载所有的样本pbm格式图像作为训练
if(j<10)
sprintf(file,"%s%d/%d0%d.pbm",file_path,i,i
, j);
else
sprintf(file,"%s%d/%d%d.pbm",file_path,i,i
, j);
src_image =
cvLoadImage(file,0);
if(!src_image)
{
printf("Error: Cant load image %s\n",file);
//exit(-1);
}
//process file
prs_image =
preprocessing(src_image,size,size);
//生成训练矩阵,每个图像作为一个向量
cvGetRow(trainClasses, &row,i*train_samples
+j);
cvSet(&row,
cvRealScalar(i));
//Set data
cvGetRow(trainData, &row,i*train_samples
+j);
IplImage*
img = cvCreateImage(
cvSize( size,
size ),
IPL_DEPTH_32F, 1 );
//转换换 8 bits image to 32位浮点数图片取值区间为[0,1]
//scale = 0.0039215 = 1/255;
cvConvertScale(&prs_image,img, 0.0039215, 0);
cvGetSubRect(img, &data,cvRect(0,0,size,size));
CvMat
row_header, *row1;
//convert data matrix sizexsize to vecor
row1 =
cvReshape( &data, &row_header, 0, 1 );
cvCopy(row1, &row,NULL);
}
}
}
3. 分类识别
识别方法采用knn近邻分类法。这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值。这种方法有时候被称作“基于样本的学习”,即为了预测,我们对于给定的输入搜索最近的已知其相应的特征向量。
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
识别工作主要有以下几个步骤:
1. 初始化机器学习算法,及其训练
knn=new CvKNearest( trainData, trainClasses, 0, false, K );
因为trainData, trainClasses数据已得到。训练在CvKNearest算法初始化中已经完成
2. 识别
获取识别测试的数据,testData
result=knn->find_nearest(testData,K,0,0,nearest,0);
result为返回的识别的结果
4. 实验结果
在knn参数k=5,子图像向量大小选取128*128像素,训练样本50副图片,测试样本50副图片,系统误识率为7.4%。对于用户手写阿拉伯数字2的识别结果为2,识别比较准确。
5. 未来的工作
本程序主要参照网上的一些实例完成了部署跟实验工作,虽然仅仅完成了手写阿拉伯数字的识别工作,但是字符识别的一些原理工作都是相同的,未来能够从一下几个方面进行提高:
1. 提高程序的识别准确率,从一些文献实现的结果来看,简单的模型结合大量的训练样本,往往效果比复杂的模型结合少量训练样本实现的效果好。
2. 扩展程序的功能,从实现简单的字符到最终实现识别手写汉字等。
3. 提高识别速度,改进算法为并行算法,实现如联机在线识别等。
6.主要参考文献:
http://blog.csdn.net/jackmacro/article/details/7026211
http://blog.damiles.com/2008/11/basic-ocr-in-opencv/
http://blog.csdn.net/zhubenfulovepoem/article/details/6803150
http://blog.csdn.net/firehood_/article/details/8433077
http://blog.csdn.net/viewcode/article/details/7943341
7.项目打包下载
http://download.csdn.net/detail/wangyaninglm/6631953
8.手写字符识别的复杂版本,这个增加了一些OpenGL技术,程序比较复杂
http://blog.csdn.net/wangyaninglm/article/details/41848019
基于opencv的手写数字字符识别的更多相关文章
- 基于opencv的手写数字识别(MFC,HOG,SVM)
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧. 识别效果大概都能正确. ...
- 学习OpenCV——SVM 手写数字检测
转自http://blog.csdn.net/firefight/article/details/6452188 是MNIST手写数字图片库:http://code.google.com/p/supp ...
- OpenCV手写数字字符识别(基于k近邻算法)
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部 ...
- 基于TensorFlow解决手写数字识别的Softmax方法、多层卷积网络方法和前馈神经网络方法
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one ...
- keras基于卷积网络手写数字识别
import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x ...
- OpenCV+TensorFlow图片手写数字识别(附源码)
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这 ...
- 基于OpenCV的KNN算法实现手写数字识别
基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...
- 手写数字识别 ----在已经训练好的数据上根据28*28的图片获取识别概率(基于Tensorflow,Python)
通过: 手写数字识别 ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别 ----Softmax回归模型官方案例详解(基于Tensorflow,Pytho ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
随机推荐
- 使用docker搭建hadoop分布式集群
使用docker搭建部署hadoop分布式集群 在网上找了非常长时间都没有找到使用docker搭建hadoop分布式集群的文档,没办法,仅仅能自己写一个了. 一:环境准备: 1:首先要有一个Cento ...
- JAVA性能优化的五种方式
一,JAVA性能优化之设计优化 设计优化处于性能优化手段的上层.它往往须要在软件开发之前进行.在软件开发之前,系统架构师应该就评估系统可能存在的各种潜在问题和技术难点,并给出合理的设计方案,因为软件设 ...
- [NOI.AC#32]sort 构造
链接 50分做法(只有0,1) 根据归并排序的思想,假设我们现在已经把 \(l\dots mid\) 和 \(mid+1\dots r\) 排好序 只要把左边连续的1和右边连续的0翻转即可 inlin ...
- [JZOJ 5875] [NOIP2018提高组模拟9.20] 听我说,海蜗牛 解题报告(BFS+二分)
题目链接: http://172.16.0.132/senior/#main/show/5875 题目: 题解: 注意这题只能经过开放的港口 我们考虑用vector存下每个点不能到的点,并把并让vec ...
- WPF学习(四) - 附加属性
冷静了一晚,我就当这次学习的过程是在看狗血剧情的武打小说吧:没有垃圾的武术,只有垃圾的武者…… 还有个话儿怎么说来着:你们是用户,不是客户,也就有个使用的权力.搞清楚身份,别叽叽歪歪的! 没办法,全世 ...
- FPGA之阻塞赋值与非阻塞赋值
Verilog语言中讲的阻塞赋值与非阻塞赋值,但从字面意思来看,阻塞就是执行的时候在某个地方卡住了,等这个操作执行完在继续执行下面的语句,而非阻塞就是不管执行完没有,我不管执行的结果是什么,反正我继续 ...
- Windows常见软件故障及解决方案
HM NIS Edit: HM NIS Edit 新建程序向导无效,提示“Please specify the setup lang” 说明 NSIS 安装不对.解决方案有二种: 1. 重装 NSIS ...
- linux批处理笔记
最近不得不用到Linux批处理,于是把要用到的程序反复研究了一下. #!/bin/bash是指此脚本使用/bin/bash来解释执行. -le -ge分别是小于和大于,这个倒是和latex里面的命令很 ...
- POJ 2029 Get Many Persimmon Trees 【 二维树状数组 】
题意:给出一个h*w的矩形,再给出n个坐标,在这n个坐标种树,再给出一个s*t大小的矩形,问在这个s*t的矩形里面最多能够得到多少棵树 二维的树状数组,求最多能够得到的树的时候,因为h,w都不超过50 ...
- express + jqPaginator 分页展示内容
写在前面的话 分页展示内容也是我们在页面开发中经常会遇到的需求 前端页面利用jqPaginator这个jquery插件来编写 后端利用mysql存储数据 开始敲代码 回顾sql知识 首先让我们回顾一下 ...